一种硅铝催化材料的改性方法技术

技术编号:8381344 阅读:215 留言:0更新日期:2013-03-06 21:14
本发明专利技术公开了一种硅铝催化材料的改性方法,其特征在于该方法包括下述步骤:(1)将铝源与碱溶液在室温至85℃下中和成胶,成胶终点pH为7~11;(2)按照SiO2∶Al2O3=1∶(1~6)的重量比加入硅源,在室温至90℃下陈化1~10小时;(3)将所得固体沉淀物进行铵交换或酸交换除去杂质离子;(4)将滤饼重新打浆后按照氟硅酸∶材料干基=(0.01~0.12)∶1的重量比与氟硅酸混合,在室温至80℃下反应0.5~2小时;(5)过滤水洗后,在100℃~150℃下干燥10~20小时。采用本发明专利技术提供的改性方法得到的酸性硅铝催化材料中孔特性明显,孔分布集中,同时含有B酸和L酸中心,且B酸与L酸比例明显提高,材料具有更好的轻油微反活性。

【技术实现步骤摘要】

本专利技术涉及一种催化材料的改性方法,更进一步说是涉及一种酸性硅铝催化材料的改性方法
技术介绍
催化裂化和加氢裂化是石油炼制过程中两个非常重要的工艺过程,广泛应用于石油加工工业中,在炼油厂中占有举足轻重的地位。在催化裂化和加氢裂化工艺中,重质馏分如减压馏分油或更重组分的渣油在催化剂存在下发生反应,转化 为汽油、馏出液和其他液态裂化产品以及较轻的四碳以下的气态裂化产品,在这些反应过程中通常需要使用具有高酸性和高裂化活性的催化材料。微孔分子筛材料由于具有较强的酸性以及很高的催化反应活性而被广泛地应用于石油炼制和加工工业中。但随着石油资源的日益耗竭以及原油重质化、劣质化和掺渣比例不断提高的变化趋势,特别是市场对轻质油品的大量需求,近年来在石油加工中越来越重视对重油、渣油的深加工,部分炼厂已开始掺炼减压渣油,甚至直接以常压渣油为裂化原料。传统的微孔分子筛孔道较小,孔道直径一般小于2nm,孔道的限制作用比较明显,不适用于重油或渣油等大分子的催化反应。无定形硅铝材料同样是一种酸性材料,既具有B酸中心又具有L酸中心,是早期催化裂化催化剂中的主要活性组分,但由于其裂化活性较低且所需要的反应温度比较高逐渐被结晶分子筛所替代。但在加氢裂化反应过程中,由于无定形硅铝材料的孔径较大,孔径分布更宽,且具有比较缓和的酸催化性能,因此广泛用作加氢裂化中的载体材料。根据IUPAC定义,孔径介于2 50nm的材料为中(介)孔材料,而重油等大分子的尺寸范围正处于这个孔径范畴内,因此中孔材料特别是中孔硅铝材料的研究引起了催化领域研究人员的极大兴趣。US5, 051,385公开了一种单分散中孔硅铝复合材料,将酸性无机铝盐和硅溶胶混合后再加入碱反应制成,其中铝含量为5 40重量%,孔径20 50nm,比表面积50 100m2/g。US4, 708, 945中公开的是先在多孔一水软铝石上负载氧化硅粒子或水合氧化硅,再将所得复合物在600°C以上水热处理一定时间,制得氧化硅负载在类一水软铝石表面上的催化剂,其中氧化硅与过渡态一水软铝石的羟基相结合,表面积达100 200m2/g,平均孔径 7 7. 5nm。US4, 440,872中公开了一系列酸性裂化催化剂,其中一些催化剂的载体是通过在Y-Al2O3上浸溃硅烷,然后经50(TC焙烧或水蒸汽处理后制得的。US2, 394,796公开了在多孔水合氧化铝上浸溃四氯化硅或四乙基硅,然后经水解获得娃招复合材料。CN1353008A中采用无机铝盐和水玻璃为原料,经过沉淀、洗涤、解胶等过程形成稳定清晰的硅铝溶胶,后经干燥得到白色凝胶,再在350°C 650°C下焙烧I 20小时得到硅铝催化材料。CN1565733A中公开了一种中孔硅铝材料,该硅铝材料具有拟薄水铝石结构,孔径分布集中,比表面积约200 400m2/g,孔容O. 5 2. Oml/g,平均孔径介于8 20nm,最可几孔径为5 15nm。该中孔硅铝材料的制备不需使用有机模板剂,合成成本低,得到的硅铝材料具有高的裂化活性和水热稳定性,在催化裂化反应中表现出良好的大分子裂化性能。对于无定形硅铝材料而言,其酸中心的形成主要是由于形成了有效的Si-O-Al键,这种键合结构是构成酸中心的基础。但在常规无定形硅铝材料中形成的Si-O-Al键比较少,主要是由于硅源和铝源自身的聚集趋势比较大,在水溶液中初级离子的聚合度较大,因此硅、铝初级离子进一步键合形成Si-O-Al键的比例很低,得到的硅铝材料的酸性比较低。US4,226,743中公开了一种由硅酸盐、酸性或碱性铝盐如硫酸铝或偏铝酸钠为原料通过共胶法制备硅铝材料的方法,通过PH值由碱性到酸性的调变达到改善硅铝结合状态的目 的。US4,003, 825公开了一种由有机硅化合物在硝酸铝的水溶液中水解制备硅铝材料的方法,但有机硅价格较贵且稳定性有一定问题。US5,045,519公开了一种在水介质中将烷氧基铝与正硅酸混合水解制备硅铝材料的方法,这种方法得到的材料具有拟薄水铝石结构,杂质含量低,热稳定性好,酸性较强,但硅铝之间的分布不太均匀。为了改善硅铝材料的均匀性,US6,872,685中将硅酸盐溶液与酸性铝盐溶液在剧烈搅拌条件下混合均匀,形成铝盐存在下的硅溶胶,然后再与碱性沉淀剂混合形成共溶胶,从而制备出高均匀性的无定形硅铝材料。其采用表面和体相硅铝原子比之比-即SB值,来表征无定形硅铝材料的均匀性,并和两种商业硅铝材料Siral 40 (Sasol公司)和MS-25 (Grace公司)相比,SB值均要更接近1,说明该法制备的无定形硅铝的均匀性更强,酸性也要高一些。
技术实现思路
本专利技术的目的是提供,所得材料B酸与L酸比例明显提闻。本专利技术提供的硅铝催化材料的改性方法,其特征在于该方法包括下述步骤(I)将铝源与碱溶液在室温至85°C下中和成胶,成胶终点pH为7 11 ; (2)按照SiO2 Al2O3=I (I 6)的重量比加入硅源,在室温至90°C下陈化I 10小时;(3)将所得固体沉淀物进行铵交换或酸交换除去杂质离子;(4)将滤饼重新打浆后按照氟硅酸材料干基=(O. 01 O. 12) I的重量比与氟硅酸混合,在室温至80°C下反应O. 5 2小时;(5)过滤水洗后,在100°C 150°C下干燥10 20小时。采用本专利技术提供的改性方法得到的酸性硅铝催化材料中孔特性明显,孔分布集中,同时含有B酸和L酸中心,且B酸与L酸比例明显提高,材料具有更好的轻油微反活性。另外,本改性方法得到的酸性硅铝催化材料具有更高的结晶度。本专利技术提供的改性方法中,所说的铝源选自硝酸铝、硫酸铝或氯化铝;所说的碱选自氨水、氢氧化钾、氢氧化钠或偏铝酸钠;所说的硅源选自水玻璃、硅酸钠、四乙基硅或氧化硅。本专利技术提供的改性方法中,所说的将所得固体沉淀物进行铵交换的过程,是按固体沉淀物(干基)铵盐H2O = I : (O. I I) (10 30)的重量比在室温至100°C下交换I 3次,每次交换O. 5 I小时,直至固体沉淀物中钠含量低于O. 2% ;所说的铵盐选自氯化铵、硫酸铵、硝酸铵、碳酸铵或碳酸氢铵。本专利技术提供的改性方法中,所说的将所得固体沉淀物进行酸交换的过程,是按固体沉淀物(干基)酸H2O = I : (O. 03 O. 30) (5 30)的重量比在室温至100°C下至少交换O. 2小时;所说的酸为无机酸,通常可以选自硫酸、盐酸或硝酸。本专利技术提供的改性方法中,氟硅酸与材料浆液的混合方式可以是将氟硅酸滴加到材料浆液中,也可以将材料浆液加入到稀释的氟硅酸水溶液中,优选将氟硅酸滴加到材料浆液中。采用本专利技术提供的改性方法得到的酸性硅铝催化材料,具有拟薄水铝石晶相结构,其比表面积为200 600m2/g,孔容为O. 5 2. 0ml/g,平均孔径为8 20nm,以氧化物重量计,其无水化学表达式为:(0 O. 2)Na2O · XSiO2 · yAl203,在x/y为O. 20 O. 25时,其200°C测得的吡啶红外B酸与L酸的比例为O. 060 O. 085,在x/y为O. 4 0 O. 50时,其200°C测得的吡啶红外B酸与L酸的比例为O. 085 O. 100,在x/y为O. 80 O. 85时,其200°C测得的吡啶红外本文档来自技高网
...

【技术保护点】
一种硅铝催化材料的改性方法,其特征在于该方法包括下述步骤:(1)将铝源与碱溶液在室温至85℃下中和成胶,成胶终点pH为7~11;(2)按照SiO2∶Al2O3=1∶(1~6)的重量比加入硅源,在室温至90℃下陈化1~10小时;(3)将所得固体沉淀物进行铵交换或酸交换除去杂质离子;(4)将滤饼重新打浆后按照氟硅酸∶材料干基=(0.01~0.12)∶1的重量比与氟硅酸混合,在室温至80℃下反应0.5~2小时;(5)过滤水洗后,在100℃~150℃下干燥10~20小时。

【技术特征摘要】

【专利技术属性】
技术研发人员:郑金玉罗一斌舒兴田闫荣国
申请(专利权)人:中国石油化工股份有限公司中国石油化工股份有限公司石油化工科学研究院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1