本发明专利技术公开了一种天然气低温提氦系统及方法,采用后膨胀+氮循环制冷两塔分离技术,充分回收装置自身冷量来预冷原料天然气,不仅能适用含氦量极低的天然气,同时具有能耗低、氦气回收率高、投资省、操作灵活、变工况适应能力强等特征。本发明专利技术的积极效果是:本发明专利技术中含氦天然气经过预冷系统、低温精馏系统提取天然气中少量的氦气,氦气提浓过程中所需的超低温度冷源由独立的氮循环制冷系统提供,该独立系统调节手段丰富,同时不受上游操作的影响,采用后膨胀制冷系统,不仅使系统操作压力较现有工艺高,在相同的制冷温度下,可使产品氦气浓度更高。
【技术实现步骤摘要】
本专利技术涉及一 种。
技术介绍
氦气因其独特的性质,在国防军工和科学研究中有着重要的用途。利用其-268. 9°C的低沸点,液氦可以用于超低温冷却;在火箭和航天中用作液氢燃料系统的清洗介质和加压推进剂;在悬浮列车等领域中广受关注的超导体应用中,氦气也是不可或缺的。此外,氦气在医疗领域的核磁共振成像设备中用作超导电磁体冷却、在核发电装置用作传热介质、在光纤生产中用作冷却和惰性气体保护以及在仪器分析方面用作气相色谱等的载气等方面都得到广泛的应用。随着世界经济的快速发展和产业结构的不断调整,各国经济正逐步融入到全球大市场之中。在未来两三年中,氦气的市场规模与经济增长将会同步保持稳定增长态势。根据预测,在未来多年内全球对氦气的需求量将以每年6%左右的速度增长,其需求总量可达到2. 25 3亿立方米。由此推算,到2030年全球的氦气需求将短缺I. 6 I. 7亿立方米, 其中亚太地区短缺约6000万立方米。而我由于国内氦气的消费量快速提升,每年都需要通过大量进口来弥补需求缺口。据有关部门统计,2007 2008年,氦气行业年均消费增量将会保持在O. 37亿m3左右。氦气在空气中含量极少(约O. 005%)并无工业提氦价值。氦气主要存在于天然气中,其含量在世界各地各有不同,有的氦气含量最高达8%。因此从天然气中提取氦气仍是氦气的主要工业来源。目前国内外天然气提氦工艺主要包括非低温法和低温法。非低温法主要采用膜分离和变压吸附。我国研究的膜分离技术采用国产聚砜/硅橡胶中空纤维膜,常温下经一级膜分离可使氦浓缩5 5. 5倍,氦收率达到63°/Γ75%。但该工艺技术还没工业化,同时膜的可靠性和稳定还需进一步研究证明。在此研究的基础上,我国研究人员提出了用膜分离+低温分离联合法从天然气中提取氦气。利用膜分离预浓天然气中的氦气,在相同氦气产量的情况下,可大幅度降低低温分离的规模及投资费用,但同样存在膜分离膜中分离膜的技术问题。而没有真正意义上的工业化。在国外俄罗斯科学院西伯利亚分院研究于2006年研究出一种采用非低温法从天然气中分离氦气的新工艺。该工艺利用极为细小的玻璃微珠组成的膜将氦气从气流中吸附出来,但目前该工艺尚未投入规模化工业生产中,还有待进一步的研究开发。低温法提氦工艺,国内外一般采用氮气循环制冷技术来满足低温法提氦工艺中所需的制冷温度。对于前端原料气预冷方案,根据具体原料气气质条件,一般采用膨胀制冷、 外部制冷(如PRICO混合冷剂制冷循环)以及前膨胀制冷+外部制冷的方式。非低温方法由于其膜分离元件的技术问题等问题,在天然气提氦工业中尚未成熟到足以规模化和工业化的程度。低温法中,现有的外部制冷工艺虽可联产LNG,但能耗高,而前膨胀制冷工艺,提氦塔操作压力较低,操作温度低(最低-192°C ),对塔体材质要求高,在到达相同氦气浓度的情况下,冷量需求大,能耗高,变工况能力较差。同时对数平均温差小,传热面积大,投资较高。
技术实现思路
为了克服现有技术的上述缺点,本专利技术提供了一种, 采用后膨胀+氮循环制冷两塔分离技术,充分回收装置自身冷量来预冷原料天然气,不仅能适用含氦量极低的天然气,同时具有能耗低、氦气回收率高、投资省、操作灵活、变工况适应能力强等特征。本专利技术解决其技术问题所采用的技术方案是一种天然气低温提氦系统,包括原料气冷却器、一级提浓塔、二级提浓塔、深冷器、膨胀机组、氮气压缩机和氮气缓冲罐,其中原料气冷却器左侧进口接含氦净化天然气,原料气冷却器底部出口与进口分别通过管线与一级提浓塔塔底的蒸发器进口与出口连接;原料气冷却器右侧出口通过管线与一级提浓塔中部进口连接;原料气冷却器右侧中部进口通过管线分别与一级提浓塔塔顶冷凝器上部出口、深冷器底部的低压气出口连接;原料气冷却器左侧中部出口接下游系统;原料气冷却器右侧下部进口通过管线与一级提浓塔塔底出口连接;原料气冷却器上部的出口与进口分别通过管线与膨胀机组的透平膨胀机进口与出口连接;原料气冷却器左侧的出口与膨胀机组的同轴压缩机进口连接,同轴压缩机出口接入下游系统;一级提浓塔塔底出口通过管线与塔顶冷凝器进口连接,一级提浓塔塔顶冷凝器出口通过管线与二级提浓塔塔底蒸发器进口连接,塔底蒸发器出口接深冷器底部进口,深冷器中部出口接入二级提浓塔中部进口 ;二级提浓塔塔顶冷凝器出口接深冷器左侧上部进口,深冷器右侧上部出口为产品粗氦出口 ;二级提浓塔塔底部出口通过管线深冷器左侧下部进口连接;氮气缓冲罐、氮气压缩机和深冷器依次连接,深冷器左侧中部进口与二级提浓塔塔顶冷凝器的低温氮气出口连接;深冷器左侧下部出口与二级提浓塔塔顶冷凝器进口连接,深冷器右侧中部出口接氮气缓冲罐进口。本专利技术还提供了一种天然气低温提氦方法,包括如下步骤从干燥系统来的含氦天然气进入原料气冷却器中冷却到_92°C后,通过流量调节阀调节,从天然气中抽部分气体进入一级提浓塔塔底作为蒸发器热源被冷却到-109°C后,再次进入原料气冷却器与原料气汇合继续预冷,预冷到-114. 7°C后进入一级提浓塔中部进行一次提浓;一级提浓塔塔底出来的液甲烷部分经过节流到O. 43 MPa,温度到达-139. 6°C,作为塔顶冷凝器的冷源,经过塔顶冷凝器换热后,低压返回气体与深冷器来的低压气汇合进入原料气冷却器回收冷量后进入下游系统,其余液甲烷节流到I. 68 MPa,温度为-116. (TC后进入原料气冷却器回收部分冷量,温度达到_95°C,然后进入膨胀机组的透平膨胀机,膨胀到 O. 9MPa,温度达到-117. 3°C再进入原料气冷却器换热,回收冷量后,再经过膨胀机组的同轴压缩机增压到I. O MPa后进入下游系统;一级提浓塔出来的一次粗氦进入二级提浓塔塔底蒸发器回收冷量后,进入深冷器预冷到-150. 5°C进入二级提浓塔中部进行二次提浓;经二级提浓塔塔顶冷凝器出来的粗氦进入深冷器换热到37°C成为产品粗氦;二级提浓塔塔底部出来的液体,经节流到O. 45MPa,温度达到-170. 4°C进入深冷器回收部分冷量后,与一级提浓塔塔顶出来低压气体汇合,二级提浓塔塔顶冷凝器所需的冷量依靠氮循环所产生的液氮蒸发提供;在氮循环系统中,气体氮储存在氮气缓冲罐中,经氮气压缩机压缩到2. OMPa,进深冷器与二级提浓塔塔顶冷凝器出来的低温氮气以及二级提浓塔塔底节流后的氮甲烷液体换冷,温度达到-160°C,再经节流阀节流到O. 13 MPa,温度达到-188. I°C,进入二级提浓塔塔顶冷凝器提供冷量,出塔顶冷凝器的低温氮气进入深冷器给出冷量后,温度为35°C进入氮气缓冲罐。与现有技术相比,本专利技术的积极效果是本专利技术中含氦天然气经过预冷系统、低温精馏系统提取天然气中少量的氦气,氦气提浓过程中所需的超低温度冷源由独立的氮循环制冷系统提供,该独立系统调节手段丰富,同时不受上游操作的影响。采用后膨胀制冷系统,不仅使系统操作压力较现有工艺高,在相同的制冷温度下,可使产品氦气浓度更高。具体表现如下1)采用双塔提氦工艺,并配以先进、高效的板翅式换热器,利用透平膨胀制冷的同时, 充分回收装置自身冷量来预冷原料天然气,而不需要其它外部冷源来预冷原料气,使装置的能耗降低;2)采用后膨胀制冷,不仅操作压力较现有的前膨胀制冷工艺高,同时能够在膨胀机允许的范围内改变膨胀比,本文档来自技高网...
【技术保护点】
一种天然气低温提氦系统,其特征在于:包括原料气冷却器、一级提浓塔、二级提浓塔、深冷器、膨胀机组、氮气压缩机和氮气缓冲罐,其中:原料气冷却器左侧进口接含氦净化天然气,原料气冷却器底部出口与进口分别通过管线与一级提浓塔塔底的蒸发器进口与出口连接;原料气冷却器右侧出口通过管线与一级提浓塔中部进口连接;原料气冷却器右侧中部进口通过管线分别与一级提浓塔塔顶冷凝器上部出口、深冷器底部的低压气出口连接;原料气冷却器左侧中部出口接下游系统;原料气冷却器右侧下部进口通过管线与一级提浓塔塔底出口连接;原料气冷却器上部的出口与进口分别通过管线与膨胀机组的透平膨胀机进口与出口连接;原料气冷却器左侧的出口与膨胀机组的同轴压缩机进口连接,同轴压缩机出口接入下游系统;一级提浓塔塔底出口通过管线与塔顶冷凝器进口连接,一级提浓塔塔顶冷凝器出口通过管线与二级提浓塔塔底蒸发器进口连接,塔底蒸发器出口接深冷器底部进口,深冷器中部出口接入二级提浓塔中部进口;二级提浓塔塔顶冷凝器出口接深冷器左侧上部进口,深冷器右侧上部出口为产品粗氦出口;二级提浓塔塔底部出口通过管线深冷器左侧下部进口连接;氮气缓冲罐、氮气压缩机和深冷器依次连接,深冷器左侧中部进口与二级提浓塔塔顶冷凝器的低温氮气出口连接;深冷器左侧下部出口与二级提浓塔塔顶冷凝器进口连接,深冷器右侧中部出口接氮气缓冲罐进口。...
【技术特征摘要】
【专利技术属性】
技术研发人员:龙增兵,琚宜林,刘家洪,冼祥发,钟志良,郭成华,杨晓秋,刘泽军,陈运强,汪宏伟,陶真,汪贵,孙林,谌天兵,陆永康,蒲黎明,刘志荣,盛炳林,李均方,兰小平,
申请(专利权)人:中国石油集团工程设计有限责任公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。