基于深度图像的人体姿态估计方法技术

技术编号:8161763 阅读:187 留言:0更新日期:2013-01-07 19:39
本发明专利技术公开了一种人体姿态估计方法,该方法根据人体的深度图像进行人体姿态的估计,以通过虚拟人体模型来模拟该图像中的人体,该深度图像包括多个帧,该方法包括如下步骤:建立虚拟人体模型,该人体模型由骨骼模型和皮肤模型组成;对所述虚拟人体模型的参数进行初始化;对所述深度图像的当前帧进行滤波;对所述虚拟人体模型和深度图像进行对应点检测;对于所述深度图像的当前帧,根据所述对应点检测的结果建立并优化目标函数,该目标函数用于描述所述虚拟人体模型和所述深度图像之间的姿势差异的大小,通过最小化目标函数的值更新所述虚拟人体模型的当前姿态。本发明专利技术建立的虚拟人体模型自由度高,皮肤变形效果好,姿态估计收敛速度快且误差小,同时利用深度摄像机获取深度图像使得人体运动姿态估计系统装置简便,便于推广应用。

【技术实现步骤摘要】

本专利技术属于图像处理、计算机图形学、人体运动学、最优化理论及计算机应用领域,具体涉及基于深度图像的人体姿态方法。
技术介绍
人体姿态估计是人体运动捕捉的核心问题。所谓人体姿态估计是指将抽象层次特征与人体模型进行匹配,从而得到不同时刻目标所处的姿态。人体的姿态表达包括两个方面,一是整个人体在世界坐标的位置和方向;二是身体各部分关节的角度及受关节角影响的皮肤变形。人体运动姿态估计的主要应用领域可以分为三大方向监控、控制、分析。 在监控应用方面,一些传统的应用包括在机场或地铁中自动检测并定位行人、人数统计或人群流动、拥塞分析等等。随着安全意识的提高,近年来出现了一些新型的应用——个人或人群的行为和动作的分析。比如在排队和购物中,检测不正常的行为或进行身份识别等。在控制应用方面,人们利用运动估计结果或姿态参数来对目标进行控制。这在人机交互方面的应用最多。在娱乐产业如电影和游戏动画等,应用也越来越广。人们可以利用捕捉到的人的形状、外表和动作,来制作3D电影或重建游戏中的人的三维模型。在分析应用方面,包括对外科病人的自动诊断、对运动员动作的分析和改进等。在视觉媒体方面,有基于内容的视频检索、本文档来自技高网...

【技术保护点】
一种人体姿态估计方法,该方法根据人体的深度图像进行人体姿态的估计,以通过虚拟人体模型来模拟该图像中的人体,该深度图像包括多个帧,其特征在于,该方法包括如下步骤:S1、建立虚拟人体模型,该人体模型由骨骼模型和皮肤模型组成;S2、对所述虚拟人体模型的参数进行初始化;S3、对所述深度图像的当前帧进行滤波;S4、对所述虚拟人体模型和深度图像进行对应点检测;S5、对于所述深度图像的当前帧,根据所述对应点检测的结果建立并优化目标函数,该目标函数用于描述所述虚拟人体模型和所述深度图像之间的姿势差异的大小,通过最小化目标函数的值更新所述虚拟人体模型的当前姿态。

【技术特征摘要】

【专利技术属性】
技术研发人员:黄向生徐波
申请(专利权)人:中国科学院自动化研究所
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1