基于激光能量陷阱法的PM2.5颗粒的测定方法及装置制造方法及图纸

技术编号:8078083 阅读:294 留言:0更新日期:2012-12-13 20:03
本发明专利技术公开了一种测量气体中的颗粒浓度的测定装置,特别适于测量PM2.5颗粒浓度。本发明专利技术将激光器发射的平行激光束经光散射器散射后再经由所述光会聚器入射到一个检测腔体,在所述检测腔体内形成空间散斑场,或者将该平行激光束经一个平凸透镜会聚后照射到一个正交光栅上,产生的0级和1级衍射光经过第一物镜会聚到所述检测腔体的内部区域,形成空间光晶格,该空间散斑场或空间光晶格中均包含能量陷阱,调节能量陷阱尺寸使得能量陷阱尺寸处于所需束缚颗粒区间的粒径分布峰值区域,并通过标定方法测定所述待测气体中选定粒径区间颗粒的浓度。本发明专利技术结构简单、成本较低,可实现对不同大小颗粒的测定。

【技术实现步骤摘要】

本专利技术属于环境大气采集及监测
,具体涉及PM2. 5颗粒的测定方法及装置。本专利技术可为多种分析仪器领域提供PM2. 5分析样品,同时可实现PM2. 5的在线监测。
技术介绍
大气环境对人们的健康有着至关重要的影响,大气中的可吸入颗粒物一直是大气环境监测的重点。PM2. 5颗粒是指大气中直径小于或等于2. 5微米的颗粒物,也称可入肺颗粒物。由于其粒径小,因此非常容易携带大量的病毒、细菌等有害物质,且不容易沉淀,在空气中停留时间长,输送距离远,被吸入人体后会直接进入支气管,干扰肺部的气体交换,弓丨发包括哮喘、支气管炎和心血管病等方面的疾病。 PM2. 5测定即是指对于大气中的PM2. 5颗粒的浓度的测定。目前已有的PM2. 5测定方法主要有重量法、β射线法和微量振荡天平法等方法。重量法是将ΡΜ2. 5颗粒直接截留到滤膜上,然后用天平称重。重量法是最直接最可靠的方法,是验证其他方法是否准确的标杆,但是,需要人工称重,程序繁琐费时。β射线法是将ΡΜ2. 5颗粒收集到滤纸上,然后照射一束β射线,β射线穿过滤纸和颗粒物时由于被散射而衰减,衰减的程度和ΡΜ2. 5的重量成正比,根据射线衰减就可以计算出ΡΜ2. 5颗粒的重量,从而算出浓度。这种方法假设仪器的采样滤膜条带均一和采集的ΡΜ2. 5颗粒物理性质均一,且其对β射线的强度衰减率相同。但是现实中,该假设往往不成立,因此数据一般也被认为存在偏差,并且该方法在潮湿高温区域故障率高。微量振荡天平法使用一头粗一头细的空心玻璃管,将粗头固定,将细头装有滤芯。大气样品从粗头进并从细头出,ΡΜ2. 5就被截留在滤芯上。在电场的作用下,细头以一定频率振荡,该频率和细头重量的平方根成反比。于是,根据振荡频率的变化,就可以算出收集到的ΡΜ2. 5的重量,从而算出浓度。采用该方法时,样品挥发性和半挥发性物质会有损失,需要加装膜动态测量系统(FDMS)进行校准,且需要更换FDMS透水膜,材料成本昂贵,且需要专业技术人员操作至少半天时间。这些方法都需要将待测大气样本先经过ΡΜ2. 5采样切割器,将直径大于2. 5 μ m的颗粒截口,使直径小于2. 5 μ m的颗粒可以通过,再对该气体进行测定。
技术实现思路
(一 )要解决的技术问题本专利技术所要解决的技术问题提出一种基于激光能量陷阱法的PM2. 5颗粒的采样和监测方法和装置,以解决现有的PM2. 5颗粒的采样和监测方法和装置必须先将气体经过PM2. 5采样切割器,并且设备结构复杂、成本高、需更换滤纸、操作繁琐的问题。( 二 )技术方案为解决上述技术问题,本专利技术提出一种测量气体中的颗粒浓度的测定装置,用于测定待测气体中预定粒径区间的颗粒的浓度,该装置包括激光器、光散射器、光会聚器和检测腔体,并且,所述激光器用于发射一个平行激光束,该平行激光束经所述光散射器散射后再经由所述光会聚器入射到所述检测腔体,在所述检测腔体内形成空间散斑场,该空间散斑场包含能量陷阱,所述检测腔体用于容纳待测气体,并位于所述光会聚器的像平面上,所述待测气体中的部分颗粒被所述能量陷阱束缚,该被束缚的颗粒的粒径分布与所述能量陷阱在垂直于所述激光束的传播方向上的尺寸相关,根据该被束缚尺寸的颗粒的数量和粒径分布能够测定所述待测气体中预定粒径区间的颗粒的浓度。本专利技术还提出一种测量气体中的颗 粒浓度的多通道测定装置,用于测定待测气体中多个预定粒径区间的颗粒的浓度,包括多个子装置,每个子装置包括激光器、光散射器、光会聚器,多个子装置共用一个检测腔体,并且,所述每个子装置的激光器用于发射一个平行激光束,该平行激光束经该子装置的光散射器散射后再经由该子装置的光会聚器入射到所述检测腔体,在所述检测腔体内形成多个空间散斑场,所述空间散斑场包含能量陷阱,所述检测腔体用于容纳待测气体,其水平方向中心位于所述每个子装置的光会聚器的像平面上,所述待测气体中的粒径处于所述多个能量陷阱尺寸所决定的能够被束缚的颗粒的粒径分布峰值区域的颗粒被每个空间散斑场的能量陷阱束缚,该被束缚多个尺寸的颗粒的数量和粒径分布能够被测量以测定所述待测气体中多个预定粒径区间的颗粒的浓度,其中,所述每个子装置的激光波长、光会聚器与所述像平面之间的距离以及该光会聚器的光圈尺寸可以调节,以使所需被束缚颗粒的粒径分布在由能量陷阱尺寸所决定的能够被束缚颗粒的粒径分布峰值区域。本专利技术还提出一种测量气体中的颗粒浓度的测定装置,用于测定待测气体中预定粒径区间的颗粒的浓度,其特征在于,包括激光器、检测腔体、平凸透镜、正交光栅和第一物镜,所述激光器用于发射一个平行激光束,所述激光束经所述平凸透镜会聚后照射到所述正交光栅上,产生的O级和I级衍射光经过所述第一物镜会聚到所述检测腔体的内部区域,形成空间光晶格,该空间光晶格中包含能量陷阱,该能量陷阱可束缚部分颗粒,该被束缚的颗粒的粒径分布与所述能量陷阱的尺寸相关,根据该被束缚尺寸的颗粒的数量和粒径分布能够测定所述待测气体中预定粒径区间的颗粒的浓度,所述检测腔体用于容纳所述待测气体,其水平方向中心位于所述第一物镜的像平面上,所述激光波长、一级衍射光到X轴的距离、一级衍射光光腰半径以及一级衍射光轴线与X轴倾角参数可以调节,以使所需被束缚颗粒的粒径分布在由能量陷阱尺寸所决定的能够被束缚颗粒的粒径分布峰值区域,其中X轴方向为所述多个子装置的激光束的传播方向。本专利技术还提出一种测量气体中的颗粒浓度的多通道测定装置,用于测定待测气体中多个预定粒径区间的颗粒的浓度,包括多个子装置,每个子装置包括激光器、平凸透镜、正交光栅和第一物镜,多个子装置共用一个检测腔体,并且所述每个子装置的激光器用于发射一个平行激光束,所述激光束经该子装置的平凸透镜会聚后照射到该子装置的正交光栅上,产生的O级和I级衍射光经过该子装置的第一物镜会聚到所述检测腔体的内部区域,形成多个空间光晶格,该空间光晶格中包含能量陷阱,该能量陷阱可束缚部分颗粒,该被束缚的颗粒的粒径分布与所述能量陷阱的尺寸相关,根据该被束缚尺寸的颗粒的数量和粒径分布能够测定所述待测气体中所述预定粒径区间的颗粒的浓度,所述检测腔体用于容纳所述待测气体,并位于所述每个子装置的第一物镜的像平面上,所述每个子装置的激光波长、一级衍射光到X轴的距离、一级衍射光光腰半径以及一级衍射光轴线与X轴倾角参数可以被调节,以使所需被束缚颗粒的粒径分布在由能量陷阱尺寸所决定的能够被束缚颗粒的粒径分布峰值区域,其中X轴方向为所述多个子装置的激光束的传播方向。本专利技术还提出一种测量气体中的颗粒浓度的多通道测定装置,用于测定待测气体中多个预定粒径区间的颗粒的浓度,其特征在于,包括至少一个第一子装置和至少一个第二子装置,其中,第一子装置包括激光器、光散射器、光会聚器,第二子装置包括激光器、平 凸透镜、正交光栅和第一物镜,所述第一子装置和第二子装置共用一个检测腔体,并且,所述检测腔体用于容纳待测气体,其水平方向中心位于所述第一子装置的光会聚器的像平面上,且位于所述第二子装置的第一物镜的像平面上,所述第一子装置的激光器用于发射一个平行激光束,该平行激光束经该第一子装置的光散射器散射后再经由该第一子装置的光会聚器入射到所述检测腔体,在所述检测腔体内形成空间散斑场,该空间散斑场包含能量陷阱,所述待测气体中的部本文档来自技高网
...

【技术保护点】
一种测量气体中的颗粒浓度的测定装置,用于测定待测气体中预定粒径区间的颗粒的浓度,其特征在于,该装置包括激光器(1)、光散射器(2)、光会聚器(3)和检测腔体(4),并且,所述激光器用于发射一个平行激光束,该平行激光束经所述光散射器散射后再经由所述光会聚器入射到所述检测腔体,在所述检测腔体内形成空间散斑场,该空间散斑场包含能量陷阱,所述检测腔体用于容纳待测气体,并位于所述光会聚器的像平面上,所述待测气体中的部分颗粒被所述能量陷阱束缚,该被束缚的颗粒的粒径分布与所述能量陷阱在垂直于所述激光束的传播方向上的尺寸相关,根据该被束缚尺寸的颗粒的数量和粒径分布能够测定所述待测气体中预定粒径区间的颗粒的浓度。

【技术特征摘要】

【专利技术属性】
技术研发人员:张青川张志刚刘丰瑞刘爽伍小平
申请(专利权)人:中国科学技术大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1