当前位置: 首页 > 专利查询>山东大学专利>正文

具有莫尔条纹效应的电力电子集成模块微小通道液冷基板制造技术

技术编号:7988132 阅读:214 留言:0更新日期:2012-11-17 03:36
本实用新型专利技术公开了一种具有莫尔条纹效应的电力电子集成模块微小通道液冷基板,较长、直、窄的矩形微小通道,它换热效率更高,且不易阻塞。它包括两块上下侧面均敷铜的导热绝缘板和被这两块导热绝缘板夹在中间的液体冷却通道及导热材料或非导热材料填充区域,其特征是,所述液体冷却通道为一个腔体,在腔体内设置有能够形成莫尔条纹效应的肋片阵列,将腔体的空间分割为多个莫尔通道,从而形成莫尔通道网络;与所述液体冷却通道对应的导热绝缘板区域集中布置电力电子器件群,与所述导热材料或非导热材料填充区域对应的导热绝缘板区域布置微电子器件群。(*该技术在2022年保护过期,可自由使用*)

【技术实现步骤摘要】

本技术涉及电力电子技术,尤其涉及大功率电力电子器件的集成技术,具体为具有莫尔条纹效应的电力电子集成模块微小通道液冷基板
技术介绍
电力电子技术是电力、电子、控制交叉而成的学科,电力电子装置的复杂性与其应用的广泛性之间的矛盾越来越尖锐,成为电能利用技术进步的瓶颈。集成电路将电子设计中最主要的难点和绝大部分工作量封装在集成芯片内部,大大降低了装 置的设计、制造和维护难度。集成电路的诞生是微电子技术发展历史上一件具有战略意义的事件。借鉴微电子技术的历史经验,电力电子技术也可以借助“集成”思想,将电力电子装置设计过程中所遇到的元器件、电路、控制、电磁、材料、传热等方面的技术难点问题和主要设计工作解决在集成模块内部,以便简化应用系统的设计,使其成为从事不同行业、具备基本电气技术专业技能的工程师所能驾驭的有力工具。电力电子集成技术的核心是研制多品种、多规格的电力电子集成模块(Integrated Power Electronics Module, IPEM)。概念化的 IPEM 是一个三维结构的模块,它拥有很高的功率密度和优良的电气性能,集成了主电路、驱动和控制电路、传感器以及磁元件等无源元件。同时,这样一个模块是可以被自动化制造和生产的,其成本因而大大降低。但是,在目前的技术条件下,要实现这样一个完全集成的电力电子模块是非常困难的,所以学术界将IPEM分为有源IPEM和无源IPEM两种,分别进行研究。有源IPEM主要实现功率器件、驱动控制电路和传感器等部件的集成;无源IPEM主要实现磁元件、电容器等无源元件的集成。有源IPEM又可以分为单片集成模块与混合集成模块。单片集成模块,指采用半导体集成电路的加工方法将电力电子电路中的功率器件、驱动、控制和保护电路制作在同一硅片上,体现了单片系统的概念。这种集成方式的集成度最高,适合大批量、自动化制造,可以非常有效地降低成本,减小体积和重量,但面临高压、大电流的主电路元件和其它低压、小电流电路元件的制造工艺差别较大,还有高压隔离和传热问题。因此单片集成难度很大。混合集成模块采用封装的技术手段,将分别包含功率器件、驱动、保护和控制电路的多个硅片封入同一模块中,形成具有部分或完整功能且相对独立的单元。这种集成方法可以较好地解决不同工艺的电路之间的组合和高电压隔离等问题,具有较高的集成度,也可比较有效地减小体积和重量,是电力电子集成的主流方式。但目前尚存在分布参数、电磁兼容、高效散热等具有较高难度的技术问题。集成化是电力电子技术最主要的发展方向。无论是有源IPEM还是无源IPEM,也无论是单片集成模块还是混合集成模块,它们都是用来处理能量的,其功耗远远高于用于信息处理的集成电路。KP500型晶闸管,当其通态平均电流为500A、导通角为120电角度时,耗散功率可达1200W。一般是将2只、4只或6只功率器件集成为一个模块。集成化后,功率损耗的体积密度急剧加大,由功耗导致的发热、温升问题异常突出,直接关系到模块的可靠运行。半导体器件的许多性能参数随温度升高而恶化,例如PN结的反向电流随温度升高按指数规律增大,双极性器件的关断时间随温度升高而延长,转折电压会随温度升高而降低。当半导体器件的功耗超过其临界值时就会造成热不稳定和热击穿。对于功率半导体芯片,最高允许温度可达150°C ;驱动、保护电路由各种集成电路组成,商用集成电路允许温度为70°C,工业用集成电路允许温度为85°C。由于在IPEM中功率电路距离驱动保护电路非常近,功率电路向驱动保护电路的传热就会直接影响到驱动保护电路的正常工作。若功率电路尚未达其工作温度上限时驱动保护电路就已达到其工作温度上限,就必须限制功率电路的工作温度上限,保证所有器件都不超过其自身的工作温度上限。热控制是各类电力电子集成模块都必须面临的共性关键技术之一。对于分立电力电子器件,常用的冷却方式有自然对流冷却、强迫空气冷却、循环水冷却、流水冷却、循环油冷却、油浸自冷却、热管散热器冷却等。中国技术专利申请200910075814. 0给出了一种用于变流器功率模块的双面水冷散热基板;中国授权专利200710035082. 3给出了一种改善大功率热管散热器和发热元件接触热阻的方法;中国实 用新型专利申请201010258174. X给出了一种具有错列冷却剂通道的功率模块组件。国内外有关学者对电力电子集成技术中的热控制问题已经展开了积极、深入地研究。余小玲、曾翔君等给出了一种混合封装电力电子集成模块的具体设计并重点研究了功率电路对驱动保护电路传热影响。该模块主要由功率电路和驱动保护电路构成。功率电路焊接在敷铜陶瓷板(Direct Bonded Copper, DBC)上,DBC又焊接在铜基板上。功率电路上覆盖4. 8mm厚的娃凝胶,在娃凝胶上直接放置一块印刷电路板(Printed CircuitBoard, PCB)来承载驱动保护电路。模块四周加以塑料封壳。功率电路产生的热量大部分通过安装在铜基板底部的散热器以自然对流和辐射的方式散出,另一小部分通过PCB的上表面散出。采用有限元分析软件为混合封装电力电子集成模块建立了正确的热模型,在不同的功率电路发热量及不同的铜基板底面散热条件下,根据该模型可预测功率器件和驱动保护电路PCB上的最高温度。作者的分析结果说明,功率器件到模块内铜基板底面间的热阻为0. 450C /W,驱动保护电路PCB受功率电路的传热影响显著,在自然对流散热的情况下,功率器件的温度达到85°C左右时,PCB上的最高温度已接近70°C,此时功率器件的发热量为45W。熊建国等针对高热流密度负荷下大功率电力电子设备散热冷却,以带有微槽道强化传热面的小型重力型平板热管蒸发器为研究对象,以水-氧化铜纳米颗粒组成的纳米流体为工质,在不同运行压力和不同纳米流体浓度下对平板热管蒸发器的沸腾换热特性以及临界热通量进行了实验研究。Timothy J等给出了一种利用热管技术对IPEM进行冷却的技术方案。T. Tilford, Seung-Yo Lee等分别利用有限元方法对有源、无源IPEM的热应力及其对模块性能的影响进行了分析。Dustin A等利用外部可测温度估计电力电子模块功率器件结温、通过功率器件开关频率和工作电流的控制对功率器件结温实施主动控制。C. M. Johnson、Przemyslaw R、Skandakumaran P 等学者也对 IPEM 液体冷却方案进行了定量分析与设计。液体冷却方案属于有源热沉,通过某种高热导率媒质(如去离子水、液氮等)及时将器件产生的热量从热沉中带走,使热沉尽可能的工作在亚热饱和状态下,以维持热沉表面温度近似恒定,其热阻远小于无源热沉热阻。液冷系统的性能取决于散热通道的几何尺寸、冷却液在通道的流速、散热翅的表面积、冷却风速等因素,优化以上因素可提高系统的散热性能。由于通道狭窄,微通道散热器比通常的散热器有极高的散热性能。一般有源热沉的热阻大约是无源热沉热阻的几十甚至上百分之一,而微通道热沉热阻是无源热沉热阻的1/50-1/200,因此受到国内外学者的广泛关注。邵宝东等基于热阻网络模型,以热阻和压降作为目标函数建立了微槽冷却热沉的多目标优化模型,采用序列二次规划方法对微槽的结构尺寸进行了优化设计本文档来自技高网...

【技术保护点】
一种具有莫尔条纹效应的电力电子集成模块微小通道液冷基板,其特征是,它包括两块上下侧面均敷铜的导热绝缘板和被这两块导热绝缘板夹在中间的液体冷却通道以及导热材料或非导热材料填充区域,其特征是,所述液体冷却通道为一个腔体,在腔体内设有形成莫尔条纹效应的肋片阵列,将腔体的空间分割为多个莫尔通道,从而形成莫尔通道网络;与所述液体冷却通道对应的导热绝缘板区域集中布置电力电子器件群,与所述导热材料或非导热材料填充区域对应的导热绝缘板区域布置微电子器件群。

【技术特征摘要】

【专利技术属性】
技术研发人员:李现明张玉林赵怀杰
申请(专利权)人:山东大学
类型:实用新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1