单端正激并联推挽式大功率变换器制造技术

技术编号:7642700 阅读:228 留言:0更新日期:2012-08-04 21:04
本发明专利技术公开了一种单端正激并联推挽式大功率变换器,主要由主电路、控制电源、电压调节电路、推挽式PWM波形产生电路、脉冲放大电路和反馈电路等组成;所述主电路由工频整流与滤波电路、推挽式高频逆变电路、高频整流和滤波电路等依次串联组成;本发明专利技术在高频逆变部分采用了二个在磁路上完全独立的单端正激式变压器,在电路连接上并联,它们工作于推挽工作方式,输出功率大,工作可靠,避免了普通推挽功率变换器磁路在正负半波不对称时造成的直流偏磁的危险,同时也克服了桥式电路工作时桥臂直通的危险。功率管驱动电路省去了光电耦合器和脉冲变压器,电路结构简单,可靠,体积小,重量轻,广泛应用于需要低电压大电流的场合。

【技术实现步骤摘要】

本专利技术涉及一种电阻焊机,尤其涉及一种高功率密度的低压大电流功率变换器。
技术介绍
在电阻焊机中,大都需要低电压大电流的可调直流电源,而传统的电阻焊机电源采用工频变压器降压,体积大,重量重,动态响应慢,控制精度不高,尤其在一些野外作业时,给操作者带来很大的不方便。因此现代电阻焊机电源大都采用大功率高频逆变电源,然而传统的大功率高频逆变电源主要采用两种电路方式,一种是桥式逆变电路,由于存在桥臂直通的风险,故障率高;另一种则是普通推挽式电路,由于存在磁路耦合,要求主变压器和控制电路在正负半波严格对称,制造工艺复杂,成本高,同时主开关管在关断时要承受两倍的直流电源电压,开关管应力大。
技术实现思路
本专利技术的目的在于针对现有技术的不足,提供了一种单端正激并联推挽式大功率变换器。本专利技术的目的是通过以下技术方案来实现的一种单端正激并联推挽式变换器,它主要由主电路、控制电源、电压调节电路、推挽式PWM波形产生电路、脉冲放大电路和反馈电路等组成;所述主电路由工频整流与滤波电路、推挽式高频逆变电路、高频整流和滤波电路等依次串联组成;电压调节电路、推挽式PWM波形产生电路、脉冲放大电路和推挽式高频逆变电路依次相连,高频整流与滤波电路通过反馈电路与电压调节电路相连;控制电源分别与电压调节电路、推挽式PWM波形产生电路和脉冲放大电路相连,向电压调节电路、推挽式PWM波形产生电路和脉冲放大电路供电。进一步地,所述推挽式高频逆变电路包括两个变压器T1和T2、两个绝缘栅双极性三极管(Insulation Gate Bipolar Transistor, IGBT) Q1 和 Q2,两个电阻 R1 和 R2、两个电容C2和C3、两个二极管D3和D4 ;工频整流与滤波电路的正极输出端A分别与变压器T1和T2的第一绕组N1的同名端、二极管D3和D4的阴极相连,工频整流与滤波电路的负极输出端B分别与变压器T1和T2的第三绕组N3的同名端、绝缘栅双极性三极管Q1和Q2的发射极、电阻R1和R2的一端相连,变压器T1的第一绕组N1的非同名端分别与绝缘栅双极性三极管Q1的集电极和电容C2的一端相连,电容C2的另一端与电阻R1的另一端相连;变压器T2的第一绕组N1的非同名端分别与绝缘栅双极性三极管Q2的集电极和电容C3的一端相连,电容C3的另一端与电阻R2的另一端相连。进一步地,,所述高频整流与滤波电路包括两个二极管DjP D2、电感L1和电容C4 ;二极管D1的阳极接推挽式高频逆变电路的变压器T1的第二绕组N2的同名端,二极管D2的阳极接推挽式高频逆变电路的变压器T2的第二绕组N2的同名端,二极管D1的阴极和二极管02的阴极均与电感L1的一端相连,电感L1的另一端和电容C4的一端相连,相接处作为输出的正极;变压器T1和T2的第二绕组N2的非同名端均与电容C4的另一端相连,相接处作为输出的负极。进ー步地,,所述推挽式PWM波形产生电路包括集成电路U3、三个电阻R3-R5、两个电容C4、C5 ;集成电路U3的第一脚接电压调节电路的输出,集成电路U3的第二脚和第三脚相连,集成电路U3的第四脚分别与电阻R4、电阻R5和电容C5的一端相连,电阻R4的另一端接控制电源的地端,电阻R5和电容C5的均接到控制电源的+15V端。集成电路U3的第五脚与电容C4的一端相连,电容C4的另一端接地,集成电路U3的第六脚与电阻R3的一端相连,电阻R3的另一端接控制电源的地端;集成电路U3的第七脚和第十六脚均接控制电源的地端;集成电路U3的第十三脚、第十四脚和第十五脚相连;集成电路U3的第八脚、第i^一脚和第十二脚均接到控制电源的+15V端;集成电路U3的第九脚和第十脚作为推挽式PWM波形产生电路的两路输出。进ー步地,所述脉冲放大电路包括两个射极跟随器,这两个射极跟随器分别接推挽式PWM波形产生电路的两路输出,其中一个射极跟随器包括三极管VT1、两个个电阻R6和R7、一个ニ极管D5、两个稳压管DW1和DW2。推挽式PWM波形产生电路的一路输出与三极管VT1的基极相连,三极管VT1的集电极接到控制电源的+15V端,三极管VT1的发射极分别与电阻R6的一端、电阻R7的一端和ニ极管D5的正极相连,电阻R6的另一端接控制电源的地端,电阻R7的另一端和ニ极管D5的负极均与稳压管DW1的负极相连,连接处作为绝缘栅双极性三极管Q1的栅极驱动信号,稳压管DW1的正极与稳压管DW2的正极相连,稳压管DW2的负极接到绝缘栅双极性三极管Q1的发射扱。进ー步地,所述电压反馈电路包括电阻R15和电阻R16 ;电阻R15的一端接到主电路的输出正扱,电阻R15的另一端与电阻R16的一端相接,电阻R16的另一端接到主电路输出负扱,电阻R15和电阻R16的连接处作为电压反馈信号Uf。进ー步地,所述电压调节电路包括运算放大器U4,五个电阻Rltl-R14、两个电容C6和C7、两个ニ极管D7和D8、两个电位器RP1和RP2 ;所述外部模拟电压指令Ug接电阻Rltl的一端,电阻Rltl的另一端接运算放大器U4的负输入端,电压反馈信号Uf接电阻R11的一端,电阻R11的另一端分别与电阻R12和电容C6相连,电阻R12另一端与运算放大器U4的正输入端相连,电容C6的另一端接地,电阻Rn、电阻R12、电容C6构成ー个T型滤波器,对电压反馈信号Uf进行滤波;运算放大器U4的输出端与电容C7和电阻R13相连、电容C7的另一端与电阻R14的一端相连,电阻R14的另一端与电阻R13的另一端均连接到运算放大器U4的负输入端,从而构成ー个PI调节器;运算放大器U4的输出端接ニ极管D7的负极,ニ极管D7的正极接到电位器RP1的中间点,电位器RP1的一端接控制电源+15V端,电位器RP1的另一端接控制电源的地端,形成对输出电压的最小限幅,运算放大器U4的输出端接到ニ极管D8的正极,ニ极管D8的负极接到电位器RP2的中间点,电位器RP2的一端接到控制电源+15V端,电位器RP2的另一端接到控制电源的地端,形成对输出电压的最大限幅。本专利技术的有益效果是 I、这种单端正激并联推挽式大功率变换器与传统的半桥变换器或全桥变换器相比,优点在于不存在两个开关管的直通问题,所以不用设置死区时间,大大提高了电路可靠性。2、这种单端正激并联推挽式大功率变换器与传统的半桥变换器或全桥变换器相比,优点在于两个主开关管共地,可以省去光电耦合器或者脉冲变压器等隔离器件,使得电路简单可靠。3、这种单端正激并联推挽式大功率变换器与传统的推挽式变换器相比,其优点在于两只主变压器磁路独立,在设计变压器和控制电路时不需要正负半波严格对称,而传统的推挽式变换器要求正负半波必须严格对称,否则,变压器就会出现直流磁化,形成偏磁,导致逆变失败。4、这种单端正激并 联推挽式大功率变换器与传统的推挽式变换器相比,其优点在于主开关Q1或Q2只承受I. 5倍的电源电压,降低了对主开关管的耐压要求;而传统的推挽式变换器电路主开关Q1或Q2关断时要承受2倍的电源电压,电压应力大。附图说明图I是单端正激并联推挽式大功率变换器的组成框 图2是工频整流与滤波电路 图3是推挽式高频逆变电路和高频整流与滤波电路的电路 图4是推挽式PWM波形产生电路与脉冲放大电路的电路 图5是反馈电路与本文档来自技高网...

【技术保护点】

【技术特征摘要】

【专利技术属性】
技术研发人员:屈稳太郭静董凤莲
申请(专利权)人:浙江大学宁波理工学院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术