一种基于部分灌注型HiBi-PCF-FLM的高灵敏温度传感器制造技术

技术编号:6238667 阅读:231 留言:0更新日期:2012-04-11 18:40
本实用新型专利技术涉及一种基于部分灌注型HiBi-PCF-FLM的高灵敏温度传感器,以极其紧凑的结构解决了一般光纤温度传感器存在的温度灵敏度低的缺点。本实用新型专利技术中光子晶体光纤包层的小空气孔中灌注一种温度敏感型溶液,形成高双折射光子晶体光纤。该光子晶体光纤两端分别与光纤耦合器一边的两个端口相连接形成光纤环镜结构,光纤耦合器另一边的两个端口分别与宽带光源和波长测量装置相连接。光纤耦合器将由宽带光源发出的光分成两束相向传输的光,两束光的相位差对温度变化非常敏感,在经过光纤环镜输出端的干涉作用下,外界环境温度的极小变化就能引起光纤环镜输出谱的较大漂移,通过监测输出谱中某个损耗峰的漂移就可以解调出温度信息。本实用新型专利技术传感器的体积小,结构简单,测温灵敏度高,可广泛应用于需高灵敏温度监测领域。(*该技术在2020年保护过期,可自由使用*)

【技术实现步骤摘要】

本技术属于光纤传感
,具体涉及一种基于部分灌注型高双折射光子晶体光纤环镜(Highly Birefringent Photonic CrystalFiber Loop Mirror,HiBi-PCF-FLM)的高灵敏温度传感器。
技术介绍
对温度进行测量在我们日常生活中随处可见,温度计就是其中最普通的一种简易温度传感器。随着社会的发展和科技的进步,其他一些基于电信号的温度传感器如热电偶、热敏电阻等也已逐渐进入人们的视线,并广泛应用于温度检测的各个领域。它们的测温原理及结构都比较简单,但由于是以电信号作为工作媒介,很容易受到电磁干扰,且存在着易腐蚀,灵敏度较低,难以实现分布式传感等缺点。光纤传感器有许多独特的优点,如对电磁干扰不敏感,灵敏度高,体积小,抗腐蚀,可应用于各种不同的环境中。用光纤作为温度测量媒介的机理多种多样,而基于布拉格光纤光栅或长周期光纤光栅的温度传感器以其较简单的原理--采用温度变化引起的波长漂移量或强度变化进行解调即可得到温度信息,而受到人们的重视。然而,布拉格光纤光栅温度传感器的灵敏度比较低(只有~10pm/℃),无法应用于高灵敏测温领域;长周期光纤光栅温度传感器由于其对弯曲的极度敏感性,在测温过程中极易引入无法预见的干扰,因此对测量条件要求非常高。光子晶体光纤是一种新型光纤,其包层中沿轴向周期性排列着波长量级的空气孔,具有二维光子晶体结构。通过对这些空气孔的大小、分布或折射率的灵活设计,可以实现不同的功能。本技术就是在光子晶体光纤包层的部分空气孔中灌注温度敏感型溶液来实现温度传感。
技术实现思路
本技术目的就是针对现有光纤温度传感器存在的灵敏度不高的特点,提出了一种简单、紧凑、灵敏度高的基于部分灌注型的高双折射光子晶体光纤与光纤环镜结合的高灵敏温度传感器。本技术为解决技术问题所采取的技术方案是:一种基于部分灌注型HiBi-PCF-FLM的高灵敏温度传感器,包括光子晶体光纤、光纤耦合器和温度敏感型溶液。在5cm长的光子晶体光纤包层的空气孔中灌入温度敏感型溶液,从而形成高双折射效果,具体灌注方法可参考文献:Y.Y.Huang,Y.Xu,Amnon Yariv,“Fabrication of functional microstructured optical fibersthrough a selective-filling technique,”Applied Physics Letters,Vol.85,No.22,2004。光纤耦合器一边的两个端口分别与灌注温度敏感型溶液后的光子晶体光纤的两端相连接,另一边的两个端口分别与宽带光源和波长测量装置相连。光子晶体光纤与光纤耦合器组成光纤环镜结构。-->本技术所具有的优点为:光纤环镜内两束相向传输的光的相位差对温度变化非常敏感,在经过光纤环镜输出端的干涉作用下,外界环境温度的极小变化就能引起光纤环镜输出谱的较大漂移,通过监测干涉光谱中某一损耗峰的漂移量,就可以解调出温度信息,从而大大提高了温度传感的灵敏度,可以达到1.8nm/℃,相比于布拉格光纤光栅温度传感器高出两个数量级;用于传感部分的光子晶体光纤长度仅为5cm,相比于其他光纤环镜结构的温度传感器大大缩小,因此该器件结构紧凑,体积小,可广泛应用于各种温度监测领域。附图说明图1为本技术的结构图,图2为本技术中光子晶体光纤及其包层小空气孔中灌注温度敏感型后的端面示意图。具体实施方式下面结合附图对本技术进一步描述。如图1所示,一种基于部分灌注型HiBi-PCF-FLM的高灵敏温度传感器,包括光子晶体光纤1、光纤耦合器2和温度敏感型溶液3。取5cm长的光子晶体光纤1,在该光子晶体光纤包层的小空气孔中灌入温度敏感型溶液3,形成高双折射光子晶体光纤;将其两端分别与光纤耦合器2一边的两个端口相连接,光纤耦合器另一边的两个端口分别与宽带光源与波长测量装置相连接。光子晶体光纤1与光纤耦合器2组成光纤环镜结构。当宽带光源的光经过光纤环镜后在其输出端口就能产生干涉,形成多个损耗峰,损耗峰的偏振消光比可以达到20-30dB。本技术的工作方式为:光纤耦合器将由宽带光源发出的光分成两束相向传输的光进入光纤环镜,在光纤环镜中传播一周后通过光纤耦合器从光纤环镜的输出端口射出。由于光子晶体光纤在灌注温度敏感型后能达到较高的双折射效果,因此两束相反方向传播的光会产生相位差,其值为:其中:Δn为光纤环镜中两相向传输的光的折射率差,L为光子晶体光纤的长度,λ为入射光波波长。本技术中,Δn可达到5.7×10-4,L为5cm,λ为1550μm。具有相位差的两束光在光纤环镜的输出端相遇后会产生干涉,形成具有多个损耗峰的干涉谱,干涉谱与相位差的关系如下:当外界温度变化时,会引起光子晶体光纤小孔中的溶液折射率发生微小改变,继而引起光纤环镜中两相向传输的光的折射率差值产生变化,即引起两者的相位差变化,根据上述公式可知,干涉谱会发生漂移,通过监测某个损耗峰随温度变化产生的漂移量,就可以解调出温度信息。本技术能够实现高灵敏度测温的关键技术为:所使用的光子晶体光纤在灌注温度敏感型后能达到较高的双折射效果;光纤环镜中两束相向传输的光的相位差对温度变-->化比较敏感,经过光纤环镜输出谱的干涉作用,能带来损耗峰的较大漂移,从而提高测温时的灵敏度。本实施例中,选用的光子晶体光纤其包层中两个大空气孔的直径为4.5μm,其余小空气孔的直径为2.2μm,光纤长度5cm。温度敏感型液体为去离子水,室温下的折射率为1.333,折射率随温度的变化率为6.24×10-4/℃;传感器温度灵敏度达到1.8nm/℃。-->本文档来自技高网...

【技术保护点】
一种基于部分灌注型HiBi-PCF-FLM的高灵敏温度传感器,包括光子晶体光纤(1)、光纤耦合器(2)和折射率溶液(3),其特征在于:该专利技术装置的光纤耦合器一边的两个端口与灌注折射率溶液后的光子晶体光纤两端相连接,另一边的两个端口分别与宽带光源和波长测量装置相连接,光子晶体光纤与光纤耦合器组成光纤环镜结构。

【技术特征摘要】
1.一种基于部分灌注型HiBi-PCF-FLM的高灵敏温度传感器,包括光子晶体光纤(1)、光纤耦合器(2)和折射率溶液(3),其特征在于:该发明装置的光纤耦合器一边的两个端口与灌注折射率溶液后的光子晶体光纤两端相连接,另一边的两个端口分别与宽带光源和波长测量装置相连接,光子晶体光纤与光纤耦合器组成光纤环镜结构。...

【专利技术属性】
技术研发人员:赵春柳何少灵董新永倪凯
申请(专利权)人:中国计量学院
类型:实用新型
国别省市:86[中国|杭州]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1