【技术实现步骤摘要】
本专利技术涉及物联网领域,具体为基于多特征融合的非接触式状态识别方法。
技术介绍
1、非接触式状态识别技术是一种利用传感器或其他设备在不直接接触人体的情况下,通过分析人体产生的信号来识别个体的状态或行为的技术;这种技术在医疗健康监测、智能家居、人机交互等领域有着广泛的应用潜力;
2、当前环境下,人们通过非接触的方式进行面部状态识别分为两种,其一使用深度学习的方法,如vgg-face、openface、facenet和deepld等系列模型对面部进行特征提取;另一种方式则是基于深度神经网络和信号处理的方法对生理信号进行特征提取。然而,这种单模态的情绪识别方法具有较大的局限性,结合传统的脑电、皮肤电信号等的多模态情绪识别又需要额外的传感器,给状态识别带来不便。
技术实现思路
1、本专利技术的目的在于提供基于多特征融合的非接触式状态识别方法,以解决上述
技术介绍
中提出的问题。
2、为了解决上述技术问题,本专利技术提供如下技术方案:
3、基于多特征融合的非接触式状
...【技术保护点】
1.基于多特征融合的非接触式状态识别方法,其特征在于:该方法包括以下步骤:
2.根据权利要求1所述的基于多特征融合的非接触式状态识别方法,其特征在于:所述S100中通过在前端设置图像监控设备,通过设置监控周期对单用户面部数据进行实时动态多角度采集,通过生成临时锁定码对当前用户与其对应面部数据建立联系的具体步骤如下:
3.根据权利要求2所述的基于多特征融合的非接触式状态识别方法,其特征在于:所述S101中图像监控设备为监控摄像器;所述对单用户面部数据进行视频数据采集是通过多监控摄像器在单用户监控周期内对用户进行多角度动态捕捉拍摄,采集在周期内用户
...【技术特征摘要】
1.基于多特征融合的非接触式状态识别方法,其特征在于:该方法包括以下步骤:
2.根据权利要求1所述的基于多特征融合的非接触式状态识别方法,其特征在于:所述s100中通过在前端设置图像监控设备,通过设置监控周期对单用户面部数据进行实时动态多角度采集,通过生成临时锁定码对当前用户与其对应面部数据建立联系的具体步骤如下:
3.根据权利要求2所述的基于多特征融合的非接触式状态识别方法,其特征在于:所述s101中图像监控设备为监控摄像器;所述对单用户面部数据进行视频数据采集是通过多监控摄像器在单用户监控周期内对用户进行多角度动态捕捉拍摄,采集在周期内用户面部数据在不同角度下和不同光照强度下的视频图像数据;所述数据锁码单元是以当前用户的身份信息和静态面部数据为关联参数与用户实况视频数据建立联系通道,并生成对应锁定码作为数据调取通行码。
4.根据权利要求3所述的基于多特征融合的非接触式状态识别方法,其特征在于:所述s200中控分析系统将采集数据通过特征切片处理获取面部帧序列数据,并将处理后的面部帧序列数据通过卷积模型对用户面部脉搏波信号进行分析,获取对应分析结果的ippg信号特征向量的具体步骤如下:
5.根据权利要求4所述的基于多特征融合的非接触式状态识别方法,其特征在于:所述s202中帧插法为取固定时间帧...
【专利技术属性】
技术研发人员:陶雪,嵇晓强,孟凡军,江晟,王美娇,宋静,赵春华,曹秒,
申请(专利权)人:长春理工大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。