当前位置: 首页 > 专利查询>中国科学院专利>正文

基于深度学习的无人机高光谱植被物种分类方法及系统技术方案

技术编号:41128234 阅读:19 留言:0更新日期:2024-04-30 17:56
本发明专利技术公开了基于深度学习的无人机高光谱植被物种分类方法及系统,其中方法包括:利用无人机采集高光谱影像;将采集的高光谱影像进行预处理,得到预处理后影像,并将预处理后影像进行拼接镶嵌处理,得到高光谱正射影像;对高光谱正射影像进行标注,得到标签数据集;对高光谱正射影像进行植被指数融合,得到融合植被指数的高光谱正射影像;基于融合植被指数的高光谱正射影像和标签数据集,构建草地植被分类模型,并利用草地植被分类模型完成植被物种分类。本发明专利技术的模型将植被指数和深度学习分类方法融合,增强了各植被物种高光谱特征之间的区分性;同时,相比于传统的卷积层,本发明专利技术减少数据损失的同时扩大卷积层的感受野,提高了最终的分类精度。

【技术实现步骤摘要】

本专利技术涉及无人机高光谱图像处理领域,具体涉及基于深度学习的无人机高光谱植被物种分类方法及系统


技术介绍

1、草地生态系统是陆地生态系统中面积最大、分布最广的生态系统之一,约占地球表面积的40%。然而,近几十年来,由于人为和自然因素造成全球半数草地退化。准确地量化评价草地退化状况是草原生态环境脆弱区域草地保护和合理利用的基础。当前,我们急需一种动态监测方法来了解草地生态系统退化的整体空间分布。

2、草地退化往往伴随着植物建群种和优势种数量的减少甚至消失,草地植被类型以及群落结构特征往往发生明显变化。在草地退化监测工作中,实地样方调查方法难以获取区域尺度上的草地退化整体情况,并且基于传统遥感的草地退化物种分类方法无法精确反映植被的物种组成。无人机遥感具有低运行成本、高灵活性、高分辨率和实时数据采集的能力,高光谱影像具有光谱分辨率高且波段连续的特点,机载高光谱数据成为遥感监测的重要数据源。然而,无人机高光谱影像针对多类草地物种精细分类时仍面临以下挑战。一方面,不同草种之间光谱信息相似,种间差异小;另一方面,随着无人机高光谱影像空间分辨率的提升,本文档来自技高网...

【技术保护点】

1.基于深度学习的无人机高光谱植被物种分类方法,其特征在于,步骤包括:

2.根据权利要求1所述的基于深度学习的无人机高光谱植被物种分类方法,其特征在于,进行所述预处理的方法包括:镜头校准、反射率校准和大气校准。

3.根据权利要求1所述的基于深度学习的无人机高光谱植被物种分类方法,其特征在于,得到高光谱正射影像的方法包括:将所述预处理后影像导入拼接软件中,输入获取影像时无人机的飞行高度,并人工剔除异常影像;之后设置拼接参数并进行效果预览,直到拼接结果达到预期,最后进行影像的全波段拼接镶嵌,生成研究区域的所述高光谱正射影像。

4.根据权利要求1所述的基于深...

【技术特征摘要】

1.基于深度学习的无人机高光谱植被物种分类方法,其特征在于,步骤包括:

2.根据权利要求1所述的基于深度学习的无人机高光谱植被物种分类方法,其特征在于,进行所述预处理的方法包括:镜头校准、反射率校准和大气校准。

3.根据权利要求1所述的基于深度学习的无人机高光谱植被物种分类方法,其特征在于,得到高光谱正射影像的方法包括:将所述预处理后影像导入拼接软件中,输入获取影像时无人机的飞行高度,并人工剔除异常影像;之后设置拼接参数并进行效果预览,直到拼接结果达到预期,最后进行影像的全波段拼接镶嵌,生成研究区域的所述高光谱正射影像。

4.根据权利要求1所述的基于深度学习的无人机高光谱植被物种分类方法,其特征在于,得到所述标签数据集的方法包括:首先,将所述高光谱正射影像导入标签标注软件,对高光谱正射影像进行光谱特征提取,并在标签标注软件中根据不同植被物种的光谱特征进行人工目视解译分别对不同的植被物种进行标注,得到影像中各植被物种的感兴趣区域;然后,将标注好的所述感兴趣区域转换成标签栅格文件;最后,得到所述标签栅格文件之后,将其划分为训练集和测试集。

5.根据权利要求4所述的基于深度学习的无人机高光谱植被物种分类方法,其特征在于,得到融合植被指数的高光谱正射影像的方法包括:首先对所述高光谱正射影像进行红外和近红外波段的选择,然后根据选择的红外和近红外波段对高光谱正射影像进行归一化植被指数值、差值植被指数值和比值植被指数值的计算,分别得到对应的栅格图像;之后,将得到的所述栅格图像以波段的形式融合进所述高光谱正射影像的波段中,得到...

【专利技术属性】
技术研发人员:赵慧王俊迪王小丹魏达罗耀华
申请(专利权)人:中国科学院水利部成都山地灾害与环境研究所
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1