【技术实现步骤摘要】
本公开涉及人工智能,尤其涉及自动驾驶和深度学习领域领域,具体涉及一种无人驾驶车辆的位姿确定方法。
技术介绍
1、在无人驾驶车辆的运行场景中,无人驾驶车辆的定位系统需要匹配定位要素的地图特征和在线特征确定车辆位姿。
2、定位要素例如车道线的发生现实变更会使得定位系统将有一定概率出现地图特征和在线特征之间的误匹配,影响车辆位姿确定的准确性和鲁棒性,进而影响车辆运行的稳定性。
3、在定位要素发生现实变更的场景下,如何提高无人驾驶车辆位姿确定的准确性和鲁棒性,对于保证车辆运行的稳定性和安全性具有重要意义。
技术实现思路
1、本公开提供了一种无人驾驶车辆的位姿确定方法、装置、电子设备及介质。
2、根据本公开的一方面,提供了一种无人驾驶车辆的位姿确定方法,所述方法包括:
3、获取无人驾驶车辆所使用的至少两个定位要素;
4、分别确定所述至少两个定位要素的要素类型;其中,所述要素类型为变更类型或未变更类型;
5、根据各定位要素的要素类
...【技术保护点】
1.一种无人驾驶车辆的位姿确定方法,所述方法包括:
2.根据权利要求1所述的方法,其中,分别确定所述至少两个定位要素的要素类型,包括:
3.根据权利要求2所述的方法,其中,获取所述定位要素的特征匹配损失,包括:
4.根据权利要求2所述的方法,其中,根据各定位要素的要素类型,确定所述无人驾驶车辆的车辆位姿,包括:
5.根据权利要求2所述的方法,其中,所述基于所述定位要素的位置、所述定位要素的地图特征以及所述定位要素的特征匹配损失,确定所述定位要素的要素类型,包括:
6.根据权利要求5所述的方法,其中,所述类型确
...【技术特征摘要】
1.一种无人驾驶车辆的位姿确定方法,所述方法包括:
2.根据权利要求1所述的方法,其中,分别确定所述至少两个定位要素的要素类型,包括:
3.根据权利要求2所述的方法,其中,获取所述定位要素的特征匹配损失,包括:
4.根据权利要求2所述的方法,其中,根据各定位要素的要素类型,确定所述无人驾驶车辆的车辆位姿,包括:
5.根据权利要求2所述的方法,其中,所述基于所述定位要素的位置、所述定位要素的地图特征以及所述定位要素的特征匹配损失,确定所述定位要素的要素类型,包括:
6.根据权利要求5所述的方法,其中,所述类型确定网络的训练集采用如下方式构建:
7.根据权利要求6所述的方法,其中,所述根据初始样本集中候选样本所属的样本类型,确定与所述候选样本相匹配的目标增强要素,包括:
8.根据权利要求7所述的方法,其中,采用与所述目标增强要素对所述候选样本进行数据增强,得到增强样本集,包括:
9.根据权利要求8所述的方法,其中,根据目标增强要素的要素类型,确定样本增强概率,包括:
10.根据权利要求9所述的方法,其中,所述采用定位要素的属性信息和所述样本增强概率,从所述候选样本中选择需要进行数据增强的目标样本,包括:
11.根据权利要求7所述的方法,其中,采用与所述目标增强要素对所述候选样本进行数据增强,得到增强样本集,包括:
...
【专利技术属性】
技术研发人员:梁世文,何宇喆,万国伟,白宇,
申请(专利权)人:北京百度网讯科技有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。