System.ArgumentOutOfRangeException: 索引和长度必须引用该字符串内的位置。 参数名: length 在 System.String.Substring(Int32 startIndex, Int32 length) 在 zhuanliShow.Bind() 疏水化改性硫辛酸及其在制备自愈合超疏水涂层中的应用制造技术_技高网

疏水化改性硫辛酸及其在制备自愈合超疏水涂层中的应用制造技术

技术编号:40498620 阅读:9 留言:0更新日期:2024-02-26 19:26
本发明专利技术公开了一种疏水化改性硫辛酸及其制备方法与应用,所述疏水化硫辛酸单体如式(1)所示;该疏水化改性硫辛酸可以通过溶于有机溶剂中和各种无机微纳米粒子均匀混合,然后通过喷涂在基材表面挥发溶剂后,加热熔融聚合,并在紫外光照射作用下进一步稳定化学结构防止其进一步解聚,从而获得了一种具有良好的自愈合功能力和对于各种基材和无机微纳米粒子具有良好粘附功能的超疏水涂层,使其在超疏水领域应用过程中,对于各种恶劣环境和物理机械力破坏都具有一定的自我修复能力和抗机械摩擦能力。

【技术实现步骤摘要】

本专利技术涉及一种疏水化改性硫辛酸及其制备方法与其在制备自愈合超疏水涂层中的应用,通过对天然小分子硫辛酸进行疏水改性,然后与各种无机微纳米粒子进行复合,制备具有自愈合功能的超疏水涂层。


技术介绍

1、根据水在固体表面的润湿程度,固体表面有亲水性和疏水性之分,如果固体表面接触角大于150°,且滑动角小于10°,那么称之为超疏水表面。构建超疏水表面通常有两种方法:1、在微纳米粗糙结构表面修饰低表面能物质;2、在具有低表面能材料表面进行微纳米粗糙结构构筑。但传统超疏水表面在实际应用中面临着机械破坏敏感性高的难题,因其表面微纳米粗糙结构在外力作用下局部压强过高,很容易被物理机械力所破坏而导致其疏水性能下降甚至失去超疏水效果。

2、近些年来的研究通常致力于减少机械摩擦对超疏水表面的破坏程度,这些超疏水表面在遭到机械外力破坏后很难恢复原始的超疏水效果,只是达到疏水性能。所以开发具有自愈合功能的超疏水涂层材料对提高超疏水功能表面的耐机械破坏敏感性显得尤为迫切。

3、硫辛酸作为一种存在于动植物线粒体中的天然生物小分子,其具有可再生性、生物相容性和生物可降解性。由于硫辛酸分子中存在动态二硫键和活性羧基,在外界特定刺激下,如光照、加热或浓度诱导,可通过动态二硫键交换实现开环聚合。羧基之间形成的氢键可以高效自交联线性聚硫辛酸分子链,形成固体凝胶网络。这种独特的结构赋予了硫辛酸聚合物卓越的性能,包括机械适应性、自修复性,可再加工性和化学可回收性。得益于其独特的分子结构,硫辛酸开环聚合后分子间很容易形成氢键作用力,有利于对基体材料与复合的微纳米颗粒表面进行粘附。此外,硫辛酸分子上的活性羧基很容易通过化学改性来获得具有各种特殊功能的小分子。因此硫辛酸及其衍生物在柔性电子、生物医药、智能传感等领域具有较大的研究和应用潜力。由于硫辛酸羧基的亲水特性,其在超疏水领域很少被涉及。显然,如果通过硫辛酸疏水化改性并与各种无机微纳米粒子结合,不仅拓展了超疏水领域,而且对于硫辛酸的功能化应用研究也将具有深远的意义。


技术实现思路

1、本专利技术提供了一种硫辛酸疏水化功能改性,并将其与无机微纳米粒子进行复合制备一种具有自愈合、超疏水功能涂层的方法。利用无机微纳米粒子表面的粗糙结构和硫辛酸疏水化改性提供的低表面能,赋予所制备涂层超疏水性能。由于硫辛酸分子之间的氢键和二硫键作用可以使其对基材表面具有较强的粘附力,也可以牢固的将无机微纳米粒子固定在基材表面。相较于传统超疏水表面,我们所采用的制备方法不仅可以赋予超疏水表面自愈合的特性,并且可以牢固的粘附在各种基材表面。该方法不仅简单高效而且具有普适性,同时也为硫辛酸功能化改性及应用提供了更多可能。

2、本专利技术的技术方案如下:

3、第一方面,本专利技术提供一种式(1)所示疏水化改性硫辛酸,

4、

5、其中,x为-o-或-nh-,n=5~13。

6、优选地,x为-nh-,n=9。

7、碳链越长,引入的疏水链越多,疏水效果就越好,但是碳链过长会影响它的成型效果,因为分子之间存在了更多较弱的范德华力,所以我们综合成型效果和疏水效果最优选是n=9。

8、第二方面,本专利技术提供一种上述式(1)所示疏水化改性硫辛酸的制备方法,所述制备方法为:

9、将硫辛酸、草酰氯溶于二氯甲烷a,加入n,n-二甲基甲酰胺(催化剂),室温下进行第一次搅拌反应2-3h,旋蒸,得到羧基活化的硫辛酸;

10、将式(2)化合物溶于二氯甲烷b,加入三乙胺,滴加所述羧基活化的硫辛酸,0-20℃下进行第二次搅拌反应4-5h,所得反应液经后处理,得到所述式(1)所示疏水化改性硫辛酸;

11、所述n,n-二甲基甲酰胺的体积以所述硫辛酸的质量计为0.1-0.25ml/g(优选0.125ml/g);所述硫辛酸、草酰氯、式(2)化合物与三乙胺的摩尔比为1:1-2:1-2:1.5-2(优选为1:1.5:1.5:1.5);

12、

13、式(1)、(2)中,x为-o-或-nh-,n=5~13。

14、上述二氯甲烷a、b后的字母只是为了区分不同阶段加入的二氯甲烷,方便描述,无其他特殊含义。

15、进一步,所述二氯甲烷a的体积以所述硫辛酸的质量计为18-30ml/g,在本专利技术的一个实施例中为19ml/g。硫辛酸浓度不宜过高,保持在0.05g/ml左右最佳,防止反应过于剧烈。

16、在本专利技术的一个实施例中,所述二氯甲烷b的体积以所述正辛胺的质量计为18-30ml/g,在本专利技术的一个实施例中为21ml/g。

17、进一步,所述后处理为:所述反应液用无水硫酸钠干燥,旋蒸(35℃、100r/min),所得浓缩液以体积比为5:1的石油醚和乙酸乙酯的混合液为洗脱剂进行色谱柱层析,收集含目标产物的洗脱液,旋蒸(35℃、100r/min),干燥,得到所述式(1)所示疏水化改性硫辛酸。

18、第二次搅拌反应可以在20℃反应4-5h,如果原料较多则采用冰水浴,防止反应过于剧烈。后续通过进行抽滤、旋蒸、柱色谱的方式提纯产物。

19、第三方面,本专利技术还提供一种所述疏水化改性硫辛酸在制备超疏水涂层中的应用。

20、在本专利技术的一个实施例中,所述应用为:将所述疏水化改性硫辛酸、硫辛酸溶于有机溶剂,加入无机微纳米粒子,均匀分散,所得涂料喷涂在基材表面,待溶剂挥发后于70℃烘箱熔融2-5min,冷却,紫外灯下(功率18w)照射10-30min成型,得所述超疏水涂层;

21、所述疏水化改性硫辛酸、硫辛酸与无机微纳米粒子的质量比为1:0.2-0.8:1-10;所述无机微纳米粒子为花状银、微纳米二氧化硅、微纳米二氧化钛、聚四氟乙烯微米颗粒(ptfe)、聚苯胺颗粒、聚吡咯颗粒、四氧化三铁、铜微纳米颗粒、多壁碳纳米管(mwcnt)中的一种或两种以上(优选为微纳米二氧化硅或多壁碳纳米管)。

22、其中,微纳米二氧化硅的分散效果最佳,涂层面更加平整。

23、优选地,所述疏水化改性硫辛酸、硫辛酸与无机微纳米粒子的质量比为2:1:2,已达到超疏水效果,且保有较高的粘附性。

24、首先将基材表面用乙醇超声洗涤、干燥,然后将疏水改性后的硫辛酸溶解于有机溶剂中,其浓度不宜过高,不然容易导致无机微纳米粒子分散不够均匀,然后加入一定量合成或者购买的无机微纳米粒子,通过超声、搅拌将其均匀分散,然后将其喷涂在基材表面,溶剂挥发后,放入70℃烘箱熔融2-5min,冷却后放在紫外灯下(功率18w)照射10-30min后成型得到自愈合超疏水涂层。

25、进一步,所述有机溶剂为乙醇、二氯甲烷、三氯甲烷、乙酸乙酯、丙酮、四氢呋喃、乙腈中的一种或两种以上。

26、进一步,所述有机溶剂的体积以所述疏水化改性硫辛酸的质量计为20-100ml/g。

27、进一步,所述基材的材质为聚对苯二甲酸乙二醇酯(pet)、玻璃片、木头、铁、铜、聚甲基丙烯本文档来自技高网...

【技术保护点】

1.一种式(1)所示疏水化改性硫辛酸,

2.如权利要求1所述的式(1)所示疏水化改性硫辛酸,其特征在于:X为-NH,n=9。

3.如权利要求1所述的式(1)所示疏水化改性硫辛酸的制备方法,其特征在于所述制备方法为:

4.如权利要求3所述的式(1)所示疏水化改性硫辛酸的制备方法,其特征在于:所述二氯甲烷A的体积以所述硫辛酸的质量计为18-30mL/g。

5.如权利要求3所述的式(1)所示疏水化改性硫辛酸的制备方法,其特征在于:所述二氯甲烷B的体积以所述正辛胺的质量计为18-30mL/g。

6.如权利要求3所述的式(1)所示疏水化改性硫辛酸的制备方法,其特征在于所述后处理为:所述反应液用无水硫酸钠干燥,旋蒸,所得浓缩液以体积比为5:1的石油醚和乙酸乙酯的混合液为洗脱剂进行色谱柱层析,收集含目标产物的洗脱液,旋蒸,干燥,得到所述式(1)所示疏水化改性硫辛酸。

7.如权利要求1所述疏水化改性硫辛酸在制备超疏水涂层中的应用。

8.如权利要求7所述的应用,其特征在于所述应用为:将所述疏水化改性硫辛酸、硫辛酸溶于有机溶剂,加入无机微纳米粒子,均匀分散,所得涂料喷涂在基材表面,待溶剂挥发后于70℃烘箱熔融2-5min,冷却,紫外灯下照射10-30min成型,得所述超疏水涂层;

9.如权利要求8所述的应用,其特征在于:所述有机溶剂为乙醇、二氯甲烷、三氯甲烷、乙酸乙酯、丙酮、四氢呋喃、乙腈中的一种或两种以上;

10.如权利要求8所述的应用,其特征在于:所述基材的材质为聚对苯二甲酸乙二醇酯、玻璃片、木头、铁、铜、聚甲基丙烯酸酯或陶瓷。

...

【技术特征摘要】

1.一种式(1)所示疏水化改性硫辛酸,

2.如权利要求1所述的式(1)所示疏水化改性硫辛酸,其特征在于:x为-nh,n=9。

3.如权利要求1所述的式(1)所示疏水化改性硫辛酸的制备方法,其特征在于所述制备方法为:

4.如权利要求3所述的式(1)所示疏水化改性硫辛酸的制备方法,其特征在于:所述二氯甲烷a的体积以所述硫辛酸的质量计为18-30ml/g。

5.如权利要求3所述的式(1)所示疏水化改性硫辛酸的制备方法,其特征在于:所述二氯甲烷b的体积以所述正辛胺的质量计为18-30ml/g。

6.如权利要求3所述的式(1)所示疏水化改性硫辛酸的制备方法,其特征在于所述后处理为:所述反应液用无水硫酸钠干燥,旋蒸,所得浓缩液以体积比为5:1的石油醚和乙酸乙酯的混合...

【专利技术属性】
技术研发人员:刘善秋申振祥李懿臻刘秋悦于恩泽杨晋涛
申请(专利权)人:浙江工业大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1