【技术实现步骤摘要】
本专利技术属于光学检测的,具体涉及一种基于双模型表征的非球面参数拟合及面形偏差测量方法。
技术介绍
1、现代光学系统在设计时,为了更好的改善像质、简化光学系统,所使用的光学元件逐步趋向非球面化。制作这样的大型非球面光学元件需要与之匹配的高精度加工技术和检测方法,而实际加工得到的光学元件与所设计的光学元件参数是存在偏差的。为了获得非球面参数以及面形偏差,需要对非球面光学元件进行面形拟合。将拟合结果与设计值进行比较,从而指导进一步加工,使光学元件达到设计要求。因此,面形拟合精度直接影响了对实际加工情况做出反馈的评价能力。
2、常见的面形拟合方法是直接测出非球面光学元件的轮廓曲线,通过编制拟合程序结合一定的算法拟合得到被测元件特征参数。但这种方法一般只能处理光学特征参数较少的简单表面,而对于表面形式较为复杂的非球面甚至是高次非球面不具备普适性,且精度不易保证。
技术实现思路
1、本专利技术解决的技术问题是克服现有技术的不足,提出一种基于双模型表征的非球面参数拟合及面形偏差测量方法,可
...【技术保护点】
1.基于双模型表征的非球面参数拟合及面形偏差测量方法,其特征在于,通过非球面方程和Zernike拟合两种表征方式建立模型,使用光学设计软件进行仿真优化,从而获得待测非球面光学元件的参数和面形偏差。
2.根据权利要求1所述的基于双模型表征的非球面参数拟合及面形偏差测量方法,其特征在于,按以下步骤进行:
3.根据权利要求1所述的基于双模型表征的非球面参数拟合及面形偏差测量方法,其特征在于,步骤1中,使用激光跟踪仪或三坐标测量机等三维坐标采样设备获得待测非球面光学元件的三维形貌;在待测非球面光学元件表面均匀采样进行标记,用激光跟踪仪测量各采样点,处理
...【技术特征摘要】
1.基于双模型表征的非球面参数拟合及面形偏差测量方法,其特征在于,通过非球面方程和zernike拟合两种表征方式建立模型,使用光学设计软件进行仿真优化,从而获得待测非球面光学元件的参数和面形偏差。
2.根据权利要求1所述的基于双模型表征的非球面参数拟合及面形偏差测量方法,其特征在于,按以下步骤进行:
3.根据权利要求1所述的基于双模型表征的非球面参数拟合及面形偏差测量方法,其特征在于,步骤1中,使用激光跟踪仪或三坐标测量机等三维坐标采样设备获得待测非球面光学元件的三维形貌;在待测非球面光学元件表面均匀采样进行标记,用激光跟踪仪测量各采样点,处理采集到的数据得到各采样点处的三维数据,数据格式为(x1,y1,z1),(x2,y2,z2),…,(xi,yi,zi),…(xn,yn,zn),其中i为第i个数据点,n为三维数据点总数量;激光跟踪仪坐标系z轴与光学设计软件中定义的坐标系z’轴方向相反。
4.根据权利要求1所述的基于双模型表征的非球面参数拟合及面形偏差测量方法,其特征在于,步骤2中,在光学设计软件中先建立初始光路模型,根据非球面光学元件的设计参数和其非球面方程在光学设计软件中建立非球面光路模型,其中为非球面光学元件面上的点距原点的水平距离,z为非球面光学元件面上的点距原点的垂直高度,r0为非球面光学元件的曲率半径,k为二次项系数,a1、a2、a3、a4、a5为高次项系数;将各个非球面系数设定为0,曲率半径为无穷大,表征一个平面反射镜,记为s1;光路模型中以平行光入射,经过s1反射后返回;在光学系统中设置该光学参数的波前评价函数。
5.根据权利要求1所述的基于双模型表征的非球面参数拟合及面形偏差测量方法,其特征在于,步骤3中,所述非球面元件的设计参数包括曲率半径、圆锥系数、高次项系数。
6.根据权...
【专利技术属性】
技术研发人员:李金鹏,宋左子菲,刘仁爱,何鹏,马永,
申请(专利权)人:中科院南京耐尔思光电仪器有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。