马达模型生成方法、装置、存储介质及电子设备制造方法及图纸

技术编号:39970104 阅读:27 留言:0更新日期:2024-01-09 00:43
本申请公开了一种马达模型生成方法、装置、存储介质及电子设备,其中,该马达模型生成方法包括获取马达驱动数据和马达振动数据;基于马达驱动数据和马达振动数据构建自回归模型;采用粒子群算法对自回归模型进行辨识,得到马达模型参数;根据马达模型参数对自回归模型进行更新,生成目标马达模型。本方案无需了解马达内部结构,即可完成马达模型的构建。

【技术实现步骤摘要】

本申请涉及数据处理,具体涉及一种马达模型生成方法、装置、存储介质及电子设备


技术介绍

1、随着电子设备的不断发展,仅具有视觉反馈和听觉反馈功能的电子设备已经不能满足用户日益增长的需求。为了满足用户日益增长的需求,触觉反馈被应用到各种电子设备中。

2、在实际应用中,以线性马达为触觉反馈器件的电子产品,可以通过设计不同的特殊波形,获得不同的触觉体验,例如游戏中各种碰撞、枪声等的振动反馈可以带给游戏者不同的沉浸式体验。而针对不同的应用场景设计不同的特殊波形,则需要对马达进行建模。

3、然而,现有马达建模方法大多依赖于马达的物理模型,需要对马达内部结构有非常清晰的了解,才能完成马达的建模。


技术实现思路

1、本申请提供了一种马达模型生成方法、装置、存储介质及电子设备,可以无需了解马达内部结构,完成马达模型的构建。

2、第一方面,本申请提供了一种马达模型生成方法,包括:

3、获取马达驱动数据和马达振动数据;

4、基于所述马达驱动数据和所述马达振动数据构建自回本文档来自技高网...

【技术保护点】

1.一种马达模型生成方法,其特征在于,包括:

2.如权利要求1所述的马达模型生成方法,其特征在于,所述采用粒子群算法对所述自回归模型进行辨识,得到马达模型参数,包括:

3.如权利要求2所述的马达模型生成方法,其特征在于,所述获取所述粒子群算法模型的目标全局最优位置,包括:

4.如权利要求3所述的马达模型生成方法,其特征在于,所述根据所述粒子群算法模型的当前参数、当前粒子位置和预设迭代次数对粒子群算法模型进行迭代处理,以得到目标全局最优位置,包括:

5.如权利要求4所述的马达模型生成方法,其特征在于,所述根据适应性调整后的所述当前参数对所述粒...

【技术特征摘要】

1.一种马达模型生成方法,其特征在于,包括:

2.如权利要求1所述的马达模型生成方法,其特征在于,所述采用粒子群算法对所述自回归模型进行辨识,得到马达模型参数,包括:

3.如权利要求2所述的马达模型生成方法,其特征在于,所述获取所述粒子群算法模型的目标全局最优位置,包括:

4.如权利要求3所述的马达模型生成方法,其特征在于,所述根据所述粒子群算法模型的当前参数、当前粒子位置和预设迭代次数对粒子群算法模型进行迭代处理,以得到目标全局最优位置,包括:

5.如权利要求4所述的马达模型生成方法,其特征在于,所述根据适应性调整后的所述当前参数对所述粒子群算法模型进行迭代处理,以得到所述目标全局最优位置,包括:

6...

【专利技术属性】
技术研发人员:童小彬缪丽林
申请(专利权)人:上海艾为电子技术股份有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1