一种合金缺陷内壁氧化膜空间分布的无损检测方法技术

技术编号:39804438 阅读:6 留言:0更新日期:2023-12-22 02:35
本发明专利技术属于材料缺陷检测技术领域,具体为一种合金缺陷内壁氧化膜空间分布的无损检测方法,通过工业

【技术实现步骤摘要】
一种合金缺陷内壁氧化膜空间分布的无损检测方法


[0001]本专利技术涉及材料缺陷检测
,具体为一种合金缺陷内壁氧化膜空间分布的无损检测方法,更具体的,涉及一种基于工业
CT
量化激光粉末床熔融工艺制备的合金的缺陷内壁氧化膜空间分布的无损检测方法


技术介绍

[0002]激光粉末床熔融技术由于其优异的灵活性和较高的成形精度,被越来越多地用于复杂结构件等精密零部件的制备

然而,激光粉末床熔融过程复杂,涉及到传热

凝固

对流

相变

蒸发等物理过程,熔池内部非平衡状态极易产生不同尺度的孔隙缺陷,而打印件孔隙含量以及缺陷内壁氧化膜对合金服役性能起着重要作用

尽管当前的工艺能够做到打印良好的构件,但仍然做不到完全致密的产品

此外,一些后处理(如热等静压)通常会导致进一步的处理时间和最终产品成本

加之,后热处理手段所引起的显微结构的转变,从根本改变了材料的力学性能(强度和延性),另外对于尺寸较大的成形部件无法进行热处理

显然地,仅仅进行热处理手段是不合理的,因此有必要开展孔隙特性以及缺陷内壁氧化膜对于损伤容限的评定工作,从而有针对性的微调激光粉末床熔融工艺,达到节能可持续的发展目的,最终实现即使存在缺陷也能满足服役性能要求

[0003]为局部微调增材制造工艺,提高材料服役性能,利用工业
CTr/>量化包括缺陷内壁氧化膜的空间缺陷的分布,进而有针对性的监控危险部位,或者调节工艺去优化或者避免这种高度敏感性缺陷,对实际打印工艺设计和优化具有重大意义


技术实现思路

[0004]为解决现有技术存在的问题,本专利技术的主要目的是提出一种合金缺陷内壁氧化膜空间分布的无损检测方法,更具体的,涉及一种基于工业
CT
量化激光粉末床熔融工艺制备的合金的缺陷内壁氧化膜空间分布的无损检测方法

[0005]为解决上述技术问题,根据本专利技术的一个方面,本专利技术提供了如下技术方案:
[0006]一种基于工业
CT
量化激光粉末床熔融工艺制备的合金的缺陷内壁氧化膜空间分布的无损检测方法,包括如下步骤:
[0007]S1
,将激光粉末床熔融工艺制备的合金样品置于样品台中心并固定;
[0008]S2
,设置射线源参数,包括电压值

电流值

功率值;
[0009]S3
,设置探测器参数,包括探测器模式

积分时间(即曝光时间)

叠加张数(即合并张数)

跳过张数(即删减张数);
[0010]S4
,设置机械位置参数,包括射线源到转台中心距离(
FOD


射线源到探测器中心的距离(
FDD
);
[0011]S5
,探测器校准;
[0012]S6
,扫描开始,根据规则对扫描数据进行命名,并保存至指定位置;
[0013]S7
,扫描完成后,使用后处理软件对数据进行重建分析;
[0014]S8
,计算合金的代表性理论线性吸收系数(
LAC
)值;
[0015]S9
,基于合金的代表性理论线性吸收系数(
LAC
)值,使用
DCM
软件分析重新缩放
CT
切片,然后采用离散最小二乘分割方法(
DLSS
)将
CT
切片逐层分割;
[0016]S10
,进行
DCM
结果可视化,导出结果

[0017]作为本专利技术所述的一种基于工业
CT
量化激光粉末床熔融工艺制备的合金的缺陷内壁氧化膜空间分布的无损检测方法的优选方案,其中:所述步骤
S1
中,采用密度低且牢固的材料制作夹具实现合金样品的固定;低密度且牢固的材料包括但不限于发泡聚苯乙烯材料

[0018]作为本专利技术所述的一种基于工业
CT
量化激光粉末床熔融工艺制备的合金的缺陷内壁氧化膜空间分布的无损检测方法的优选方案,其中:所述步骤
S1
中,合金样品的厚度
≤0.5mm
,合金样品的形状包括矩形体

圆柱形,合金样品的材料包括不锈钢

高温合金

铝合金

[0019]作为本专利技术所述的一种基于工业
CT
量化激光粉末床熔融工艺制备的合金的缺陷内壁氧化膜空间分布的无损检测方法的优选方案,其中:所述步骤
S2
中,所述电压值为
190

225 kV
,电流值为
100

120 μ
A
,功率值为
190

270 W。
[0020]作为本专利技术所述的一种基于工业
CT
量化激光粉末床熔融工艺制备的合金的缺陷内壁氧化膜空间分布的无损检测方法的优选方案,其中:所述步骤
S3
中,所述积分时间为
15

25 min
,叠加张数为
2000

2200
张,跳过张数
10

20


[0021]作为本专利技术所述的一种基于工业
CT
量化激光粉末床熔融工艺制备的合金的缺陷内壁氧化膜空间分布的无损检测方法的优选方案,其中:所述步骤
S4
中,所述射线源到转台中心距离为
20

25 mm
,射线源到探测器中心的距离为
560

580 mm。
[0022]作为本专利技术所述的一种基于工业
CT
量化激光粉末床熔融工艺制备的合金的缺陷内壁氧化膜空间分布的无损检测方法的优选方案,其中:所述步骤
S5
中,较准方式包括快速模式或者标准模式进行探测器校正

[0023]作为本专利技术所述的一种基于工业
CT
量化激光粉末床熔融工艺制备的合金的缺陷内壁氧化膜空间分布的无损检测方法的优选方案,其中:所述步骤
S7
中,所述后处理软件包括
VGStudio、Max、Avizo、Dragonfly。
[0024]作为本专利技术所述的一种基于工业
CT
量化激光粉末床熔融工艺制备的合金的缺陷内壁氧化膜空间分布的无损检测方法的优选方案,其中:所述步骤
S8
中,根据合金成本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.
一种基于工业
CT
量化激光粉末床熔融工艺制备的合金的缺陷内壁氧化膜空间分布的无损检测方法,其特征在于,包括如下步骤:
S1
,将激光粉末床熔融工艺制备的合金样品置于样品台中心并固定;
S2
,设置射线源参数,包括电压值

电流值

功率值;
S3
,设置探测器参数,包括探测器模式

积分时间

叠加张数

跳过张数;
S4
,设置机械位置参数,包括射线源到转台中心距离

射线源到探测器中心的距离;
S5
,探测器校准;
S6
,扫描开始,根据规则对扫描数据进行命名,并保存至指定位置;
S7
,扫描完成后,使用后处理软件对数据进行重建分析;
S8
,计算合金的代表性理论线性吸收系数值;
S9
,基于合金的代表性理论线性吸收系数值,使用
DCM
软件分析重新缩放
CT
切片,然后采用离散最小二乘分割方法将
CT
切片逐层分割;
S10
,进行
DCM
结果可视化,导出结果
。2.
根据权利要求1所述的基于工业
CT
量化激光粉末床熔融工艺制备的合金的缺陷内壁氧化膜空间分布的无损检测方法,其特征在于,所述步骤
S1
中,采用密度低且牢固的材料制作夹具实现合金样品的固定;低密度且牢固的材料包括但不限于发泡聚苯乙烯材料
。3.
根据权利要求1所述的基于工业
CT
量化激光粉末床熔融工艺制备的合金的缺陷内壁氧化膜空间分布的无损检测方法,其特征在于,所述步骤
S1
中,合金样品的厚度
≤0.5mm
,合金样品的形状包括矩形体

圆柱形,合金样品的材料包括不锈钢

高温合金

铝合金
。4.
根据权利要求1所述的基于工业
CT
量化激光粉末床熔融工艺制备的合金的缺陷内壁氧化膜空间分布的无损检测方法,其特征在于,所述步骤
S2
中,所述电压值为
190

225 kV

【专利技术属性】
技术研发人员:董超芳贺星戴坤杰孔德成王力李九一隋飞
申请(专利权)人:北京科技大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1