【技术实现步骤摘要】
一种基于BP神经网络的飞机电缆绝缘层缺陷识别方法
[0001]本专利技术涉及一种基于BP神经网络的飞机电缆绝缘层缺陷识别方法,属于无损检测领域。
技术介绍
[0002]飞机电缆是飞机内部电子、电气系统信号传输的重要媒介,不同材料规格和类型的电缆,将飞机飞控、航电、燃油、液压和环控等各系统有机连接成完整的总体系统,以实现各种信号和指令的及时传输,直接保证飞机飞行的安全。由于飞机上的特殊环境,如温度、压力、湿度、液压油以及与周围金属件的摩擦等因素,电缆损坏不可避免,因此飞机电缆的损坏是长期困扰航空航天领域的棘手问题。需要特别注意的是,飞机电缆失效前的表现形式往往是电缆绝缘层的损坏。
[0003]由于飞机电缆故障是航空航天领域棘手且无法避免的问题,学术界和工业界对该领域的研究一直相当活跃。当前业界对飞机电缆的无损检测方法不尽相同,一般主要采取的检测办法有目视检测法、时域反射测量法、频域反射测量法、脉冲火花放电法等,均为基于电学的方法(除目视检测法外),应用时必须定期拆除控制电缆或者在飞机电缆断电的状态下才能进行更详细的检查 ...
【技术保护点】
【技术特征摘要】
1.一种基于BP神经网络的飞机电缆绝缘层缺陷检测方法,其特征在于包括以下过程:(1)飞机电缆绝缘层缺陷反射信号特征值的获取首先利用计算机产生加窗正弦信号并通过功率放大器放大,然后加载到发射端传感器上使其发射超声导波,使用接收端传感器采集飞机电缆绝缘层缺陷反射信号,将采集到的0~+10V反射信号通过数字采集卡转化为数字时间序列输入计算机,对其做变分模态分解(VMD),分解成I个单分量调幅调频信号(本实施例中I取6)。将各个分量的归一化能量作为反射信号的特征值,每个反射信号提取I个特征值,其特征值提取过程如下:f(t)为接收到的飞机电缆绝缘层缺陷反射信号,将其表示为I个分量的累加其中u
i
(t)可表示为受带宽限制的调频
‑
调幅信号该变分问题的约束条件为:引入二次惩罚因子α和拉格朗日乘法算子λ,将约束性变分问题变为非约束性变分问题:利用交替方向拉格朗日乘子算法迭代求解得到约束变分问题的最优解,把输入信号f(t)分解为I个IMF分量u
i
(t)。详细步骤如下:1)设置IMF分量及λ1初始条件,令n为0;2)令n=n+1进行迭代,使u
i
(t)、分别进行优化;3)令对λ进行优化,τ为噪声容忍度;4)重复步骤2、3,直到设定误差ε满足不等式时迭代完成,输出IMF分量u
i
(t)。u
i
(t)的能量即为信号f(t)的特征值,本发明中I取6,即每个缺陷信号提取出6个特征值。(2)以缺陷反射信号f(t)的特征值作为BP神经网络的输入,对BP神经网络进行训练和测试将采集到的缺陷反射信号的特征值作为样本,训练并测试BP神经网络,具体过程包括:1)BP神经网络参数的确定本发明的BP神经网络结构包括输入层、隐含层、输出层。输入层节点数与信号特征值数量一致,输出层节点数与缺陷类型种类数一致,隐含层节点数按照经验公式来确定,其中m和n分别是输入层节点个数和输出层节点个数,a为1~10之间的常数,本实施例中a取5,即隐藏层节点数为8。网络结构确定后还需确定迭代次数、误差指标、学习率,初始化BP神经网络的权值、阈值。2)训练BP神经网络
通过如下步骤对BP神经网络进行训练:第一步:选择若干个缺陷反射信号样本作为训练集。第二步:隐含层和输出层输出值的计算。其计算过程为:其中,为第l层第j个神经元的激活函数输出;为第l
‑
1层第k个节点与第l层第j个节点的连接权值;为第l层第j个节点的阈值;σ为第l层的激活函数。将其矩阵化,可写为:a
[l]
=σ(w
[l]
a
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。