一种药物-靶点相互作用预测方法和系统技术方案

技术编号:37701183 阅读:20 留言:0更新日期:2023-06-01 23:45
本发明专利技术公开了一种药物

【技术实现步骤摘要】
一种药物

靶点相互作用预测方法和系统


[0001]本申请涉及计算机生物信息
,特别是涉及一种多视图网络学习结合子网络学习的药物

靶点相互作用预测方法和系统。

技术介绍

[0002]探索潜在的药物

靶点相互作用是证明药物发现和设计有效性的关键步骤。然而基于生物实验的药物

靶点相互作用预测需要在较大的药物化合物空间中进行实验搜索,费时且昂贵。
[0003]目前最新的解决方法是基于图的计算方法,该方法依据局部或全局拓扑信息计算药物和靶点之间的相似性,并融合多源数据构建异构网络,进而通过图神经网络算法从异构网络中学习药物和靶点的特征表示用于预测相互作用关系。
[0004]但是,已有的基于图的计算方法大都简单地关注药物相关和蛋白质相关数据集构建的异构网络,而不是全面地、多角度地挖掘药物关联、蛋白质关联和药物

蛋白质对信息。此外,基于药物

蛋白质异构网络的全局学习方法由于关注的范围域较大,容易忽略邻近位置的关键信息。本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种多视图网络学习结合子网络学习的药物

靶点相互作用预测方法,其特征在于,所述方法包括:获取蛋白质数据、药物数据以及药物

蛋白质相互作用关系数据,构建相互作用关联矩阵;获取药物、蛋白质关联的疾病以及药物副作用信息,结合药物

蛋白质相互作用关联矩阵构建药物

蛋白质关联多源异构网络;基于药物

蛋白质关联多源异构网络提取药物、蛋白质初始特征信息;基于药物

蛋白质关联矩阵和药物、蛋白质初始特征信息,以药物

蛋白质对为节点构建药物

蛋白质对多视图网络;所述多视图网络包括拓扑视图、语义视图和协同视图;基于药物

蛋白质对多视图网络,通过药物

靶点相互作用预测模型进行多视图协同学习,得到药物

蛋白质的相互作用概率预测值;所述药物

靶点相互作用预测模型包括图卷积神经网络、注意力机制和全连接网络层,以多视图为多通道输入,输出药物

蛋白质的相互作用概率预测值。2.根据权利要求1所述的一种多视图网络学习结合子网络学习的药物

靶点相互作用预测方法,其特征在于,基于药物

蛋白质关联多源异构网络提取药物、蛋白质初始特征信息,包括:分别计算药物和蛋白质的邻居矩阵,并通过去噪自编码器从中提取高鲁棒性的低维特征,得到多源邻居特征表示;构建药物和蛋白质的多条元路径,通过元路径信息指导图卷积神经网络对药物

蛋白质关联多源异构网络进行子图学习,提取药物和蛋白质的嵌入属性特征,得到基于元路径的特征表示;结合多源邻居特征表示和基于元路径的特征表示,最终得到药物、蛋白质初始特征。3.根据权利要求1所述的一种多视图网络学习结合子网络学习的药物

靶点相互作用预测方法,其特征在于,构建药物

蛋白质对多视图网络,包括:从药物

蛋白质关联矩阵中提取药物

蛋白质对的拓扑视图,当任意两个药物

蛋白质对中包含相同的蛋白质或药物时,这两个药物

蛋白质对之间存在拓扑连接关系;根据药物、蛋白质的初始特征信息,通过计算药物

蛋白质对之间的距离关系,提取药物

蛋白质对的语义视图;以药物

蛋白质对的拓扑视图和药物

蛋白质对的语义视图为基准,构建药物

蛋白质对的协同视图...

【专利技术属性】
技术研发人员:宁乔王悦赵尧淼郜俊
申请(专利权)人:大连海事大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1