一种针对工厂异常的根因预警方法和装置制造方法及图纸

技术编号:37192598 阅读:30 留言:0更新日期:2023-04-20 22:53
本发明专利技术提供了一种针对工厂异常的根因预警方法和装置,方法包括:通过若干传感器采集工厂流水线生产流程数据,并记录包含时间信息的传感数据;当超出预设阈值时,则判定出现异常并发出对应的预警;根据各环节的第一控制要素量和各环节的第二控制要素量,确定控制要素异常原因量化值;各环节的控制要素量通过生产流程控制网进行获取;根据所述控制要素异常原因量化值和所述传感数据,结合预先求解得到的参数进行异常前溯,确定异常出现的原因。相比于现有技术,在传感器超出阈值时判定出现异常并发出预警,进而基于异常原因量化值进行前溯,确定异常出现的原因,有效提高了准确性,可以保证生产的效率,降低人力、物力的投入,且响应快速。应快速。应快速。

【技术实现步骤摘要】
一种针对工厂异常的根因预警方法和装置


[0001]本专利技术涉及智慧工厂领域,尤其涉及一种针对工厂异常的根因预警方法和装置。

技术介绍

[0002]智慧工厂是信息化发展的新阶段,其在数字化工厂的基础上,利用物联网技术和设备监控技术,加强信息管理和服务。其功能主要包括但不限于:掌握产销流程、对生产过程进行监控、减少生产线上人工的介入程度、采集生产线的数据等,以达到合理编排生产计划好控制生产进度的目的。
[0003]因此,在生产过程中,通常需要通过传感器等手段来采集生产线各环节的生产数据,然后通过人工的方式来对生产数据进行监测(或设置简单的传感数据预警阈值),因此无法智能地分析异常发生的原因并定位故障根,还是较为依赖生产人员的经验,这就导致需要花费大量的人力、物力和时间进行排查,且其准确性较低,生产效率也会受到影响,产能难以得到有效的提升。

技术实现思路

[0004]本专利技术提供了一种针对工厂异常的根因预警方法、装置、终端设备和计算机可读存储介质,以解决如何提高根因分析的准确性的技术问题。
[0005]为了解决上述本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种针对工厂异常的根因预警方法,其特征在于,包括:通过若干传感器分别采集工厂流水线生产流程数据,并根据所述生产流程数据,记录包含时间信息的传感数据;当所述传感数据超出预设阈值时,则判定出现异常并发出对应的预警;根据各环节的第一控制要素量和各环节的第二控制要素量,确定控制要素异常原因量化值;其中,所述各环节包括电控制点环节、气控制点环节、人工操作环节、水控制点环节、设备运转环节和原料变化环节;各环节的控制要素量通过生产流程控制网进行获取;所述第一控制要素量为判定异常时刻的控制要素量;所述第二控制要素量为判定异常前一时刻的控制要素量;根据所述控制要素异常原因量化值和所述传感数据,结合预先求解得到的异常计算参数进行异常前溯,确定异常出现的原因。2.如权利要求1所述的一种针对工厂异常的根因预警方法,其特征在于,所述异常出现的原因具体为出现异常的环节;所述根据所述控制要素异常原因量化值和所述传感数据,结合预先求解得到的异常计算参数,确定异常出现的原因,具体为:根据下式确定异常出现的原因:其中,α为预先求解得到的异常计算参数,R
t
为所述控制要素异常原因量化值,i为异常前溯时控制要素的先后顺序,T
m
为异常前溯的时刻,T1为发生异常的时刻。3.如权利要求2所述的一种针对工厂异常的根因预警方法,其特征在于,所述控制要素异常原因量化值为所述各环节的第一控制要素量总和与所述各环节的第二控制要素量总和的差值。4.如权利要求2所述的一种针对工厂异常的根因预警方法,其特征在于,在所述根据所述控制要素异常原因量化值和所述传感数据,结合预先求解得到的异常计算参数进行异常前溯之前,还包括:根据历史数据建立样品库;所述历史数据包括异常记录数据和溯源投入记录数据;基于所述样品库中的异常记录数据和溯源投入记录数据,通过人工智能算法求解所述异常计算参数;其中,所述人工智能算法包括神经网络算法、蚁群算法、退火算法和随机森林算法。5.如权利要求4所述的一种针对工厂异常的根因预警方法,其特征在于,在所述通过人工智能算法求解所述异常计算参数之后...

【专利技术属性】
技术研发人员:孙景黄玉棵
申请(专利权)人:广东牵引信息科技有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1