【技术实现步骤摘要】
一种基于云计算与特征选择的锂电池在线寿命预测方法
[0001]本专利技术属于锂电池应用领域的一种锂电池在线寿命预测方法,具体涉及了一种基于云计算与特征选择的锂电池在线寿命预测方法。
技术介绍
[0002]锂电池具有成本低、能量密度高、循环寿命长等优点,被广泛应用于固定式、便携式和交通等领域。寿命预测技术在加速锂电池新材料、新结构和新管理系统等技术的研发以及实际应用中锂电池的安全运行、预测维护和二次使用等方面都起着重要作用。然而,由于锂电池具有复杂的老化机理,且老化路径受设计、生产和应用过程中诸多因素的影响,使得在复杂的老化路径、广泛的设备可变性和多变的动态运行条件下实现简单、快速和精确的锂电池寿命预测成为了一项巨大挑战。此外,对于由数千个电池组成的大型锂电池组,由于电池之间不可避免的存在各种内在和外在差异,因此需要对每个电池进行单独的寿命预测,这将带来巨大的数据存储负担、计算负担和成本负担。同时,由于实际应用中锂电池的放电模式都是随机的,因此不能基于特定的放电测试来提取特征进行锂电池的在线寿命预测。一般情形下,锂电池的充电模 ...
【技术保护点】
【技术特征摘要】
1.一种基于云计算与特征选择的锂电池在线寿命预测方法,其特征在于,包括以下步骤:1)采集全新锂电池的循环寿命,同时采集当前锂电池在预设充放电循环区间中相同恒流、恒压充电模式阶段的电压、电流与时间数据并存储至云端;2)基于云计算分别统计当前锂电池在预设充放电循环区间中相同恒流、恒压充电模式阶段的电压、电流与时间数据在对应电压
‑
电流
‑
时间三维空间中的数目累积分布,分别获得当前锂电池的恒流、恒压充电模式阶段的数目分布特征集;3)重复步骤1)
‑
2)对剩余锂电池均进行处理,获得所有锂电池的循环寿命以及在恒流、恒压充电模式阶段的数目分布特征集F1、F2;4)将所有锂电池恒流、恒压充电模式阶段的数目分布特征集F1与F2进行融合,获得综合特征集;再利用特征选择方法对综合特征集进行特征选择,获得特征优化选择集,由特征优化选择集和对应的循环寿命构成特征优化训练集S;5)基于特征优化训练集S对锂电池寿命预测回归模型进行训练,获得训练后的锂电池寿命预测回归模型;6)在线预测时,采集待预测锂电池在预设充放电循环区间中相同恒流、恒压充电模式阶段的电压、电流与时间数据并存储至云端,计算获得对应的特征优化选择集,将特征优化选择集输入到训练后的锂电池寿命预测回归模型中进行预测,输出当前待预测锂电池的循环寿命。2.根据权利要求1所述的一种基于云计算与特征选择的锂电池在线寿命预测方法,其特征在于,所述步骤1)中,当前锂电池在预设充放电循环区间中相同恒流充电模式阶段的电压、电流与时间数据主要由预设充放电循环区间中各次充放电循环的相同恒流充电模式阶段的电压、电流与时间数据构成;每次充放电循环中,将达到恒流充电模式阶段的预设容量的时刻记为0,采集当前锂电池在当前次充放电循环的恒流充电模式阶段中各个采样点的电压与电流和记录各个采样点的时间,并作为当前锂电池在当前次充放电循环的恒流充电模式阶段中的电压、电流与时间数据;所述步骤1)中,当前锂电池在预设充放电循环区间中相同恒压充电模式阶段的电压、电流与时间数据主要...
【专利技术属性】
技术研发人员:陈剑,刘冲,许科,王勇,邵明顶,
申请(专利权)人:万向一二三股份公司上海大潜科技有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。