带有箝位电路的软开关全桥移相电路及其箝位方法技术

技术编号:3380995 阅读:244 留言:0更新日期:2012-04-11 18:40
本发明专利技术公开一种带有箝位电路的软开关全桥移相电路及其箝位方法,在反向恢复阶段结束后,将谐振电感上储存的多余能量通过电磁感应转移到箝位绕组,避免谐振电感与寄生参数引起较大震荡;将该箝位绕组与全桥变换器上的一个桥臂形成能量释放回路,以释放上述多余能量。在保留原有软开关特性同时,能解决反向二极管恢复带来的问题。此方法保证了电路在每个开关周期中,将谐振电感的多余能量及时消耗掉,消除反向二极管恢复造成的影响,同时保证了箝位二极管工作于软开关状态,提高了电路的可靠性。(*该技术在2023年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及一种。为此提出了一些解决方法,如采用软恢复的输出二极管、采用RC吸收等等。Richard Redl等在《A Novel Soft-Switching Full-Bridge DCDCConverterAnalysis,Design Considerations,and ExperimentalResults at 1.5kW,100kHz;IEEE TRANSACTIONS ON POWER ELECTRONICS.VOL.6.No.3.July 1991》中提出的二极管箝位电路是一种较好的解决方案。他采用在变压器和电感之间增加两个箝位二极管,使输出二极管在方向恢复时间存在电感的多余能量释放到输入电源中,减少了二极管产生的电压尖峰和振荡,并使输出二极管的尖峰电压箝位。但该方案中,多余能量的释放过程快慢是不可控制的,它只能由电路的本身特性和元器件参数确定,比如箝位二极管的工作状态不一定是最优的,降低了电路的可靠性。本专利技术的目的就是为了解决以上问题,提供一种,保证电路在每个开关周期中,将谐振电感的多余能量及时消耗掉,消除反向二极管恢复造成的影响,提高电路的可靠性,并且在需要的时候可以在电路中加入控制多余能量释放快慢的器件。为实现上述目的,本专利技术提出一种带有箝位电路的软开关全桥移相电路,包括全桥变换器开关桥臂、变压器、输出二极管和辅助电感,所述全桥变换器开关桥臂接于正负输入母线上,变压器原边与辅助电感串联后接于全桥变换器两开关桥臂中点,变压器副边两端分别接输出二极管,其特征是在所述谐振电感上增设一个第二绕组——箝位绕组,该箝位绕组的一端与全桥变换器开关桥臂中点上接辅助电感的端点连接,另一端分别通过第一箝位二极管和第二箝位二极管箝位在正负输入母线上。本专利技术还提出一种软开关全桥移相电路的箝位方法,用于对其输出二极管尖峰电压进行箝位,其特征是在反向恢复阶段结束后,将谐振电感上储存的多余能量通过电磁感应转移到箝位绕组,避免谐振电感与寄生参数引起震荡;将该箝位绕组与全桥变换器上的一个桥臂形成能量释放回路,以释放上述多余能量。根据本专利技术的一个实施例,在箝位电感回路中串联一个电阻。本专利技术提出的移相全桥电路采用谐振电感的箝位绕组来实现谐振电感的电压箝位,能将反向恢复期间产生的多余能量及时释放掉,避免谐振电感与寄生参数引起震荡,在保留原有软开关特性同时,能解决反向二极管恢复带来的问题。此方法保证了电路在每个开关周期中,将谐振电感的多余能量及时消耗掉,消除反向二极管恢复造成的影响,提高了电路的可靠性。在箝位电感回路中串联一个电阻后,就可以加快多余能量的释放过程。本专利技术通过调整箝位绕组的变比或串联电阻阻值,可以保证每个周期内谐振电感多余能量得到完全释放,这样箝位二极管可以零电流关断,消除了箝位二极管的反向恢复带来的影响,极大地提高了电路的可靠性,而且也能保证输出二极管被箝位在适当的电压范围内。因此本专利技术电路具备更高的可靠性和通用性。图2是本专利技术提出的电感电压箝位的移相全桥电路示意图。图3是本专利技术提出的串电阻的电感电压箝位移相全桥电路示意图。图4是图5的等效的电感电压箝位移相全桥电路图。图5是模式1t0时刻的等效电路和电流回路示意图。图6是模式2阶段的等效电路和电流回路示意图。图7是模式3阶段的等效电路和电流回路示意图。图8是模式4阶段的等效电路和电流回路示意图。图9是模式5阶段的等效电路和电流回路示意图。附图说明图10是模式6阶段的等效电路和电流回路示意图。图11是模式7阶段的等效电路和电流回路示意图。图12是模式8阶段的等效电路和电流回路示意图。图13是模式9阶段的等效电路和电流回路示意图。图14是模式10阶段的等效电路和电流回路示意图。图15是模式11阶段的等效电路和电流回路示意图。图16是模式12阶段的等效电路和电流回路示意图。图17是输出二极管反向恢复期间的相关波形分析示意图。图18是带隔直电容和全桥滤波的电感箝位移相全桥电路。本专利技术提出的一种新颖的移相全桥电路见图2,它采用谐振电感的箝位绕组来实现谐振电感的电压箝位,在保留原有软开关特性同时,能解决反向二极管恢复带来的问题,故称之为“谐振电感箝位的软开关移相全桥电路”。本电路还有它的实用改进电路,即在谐振电感支路串一个电阻Rc(图3)。此方法保证了电路在每个开关周期中,将谐振电感的多余能量及时消耗掉,消除反向二极管恢复造成的影响,提高了电路的可靠性。图2为我们提出的新型的谐振电感箝位软开关电路,其特点是在传统的移相全桥电路的谐振电感上增加一个第二绕组——箝位绕组,箝位绕组的一端与桥臂的中点连接,另一端通过两个二极管分别箝位在正负输入母线上。谐振电感与箝位绕组的匝比为k,一般取k≥1。图3为典型的实用电路,电路中在箝位电感回路中串联一个电阻。我们将以图3为例,介绍一下本电路的工作原理。对于移相全桥电路,器件本身的寄生参数在开关转换过程中对电路的特性有显著的影响,因此我们首先考虑器件的寄生参数的影响,给出等效的电路图进行分析。对于MOS管,本身存在寄生的体二极管和漏源结电容,在图3中已经给出,如D1、C1为Q1的寄生参数。对于变压器存在漏感,但一般变压器的漏感可以做的较小,且比谐振电感小,不是引起输出二极管尖峰的主要原因,因此在此暂不考虑漏感的影响。变压器存在寄生的电容参数,如匝间电容、原副边寄生电容等,还有变压器的RC吸收等,由于移相全桥电路的开关频率比较高,因此对寄生电容的影响不能忽略。同样,输出二极管也应考虑反向结电容和RC吸收参数的影响。图3电路中,理论上任何一个输出二极管的反向耐压均与变压器原边电压成比例,同时一旦两个二极管均导通时,变压器也被短路,变压器寄生电容也不起作用。因此可以将二极管寄生电容折算到变压器原边的等效电容Cs=Csp+Css×n+Csd×n/2+Csother其中Csp为原边的变压器寄生电容,Css为变压器副边总的寄生电容,Csd为单个输出二极管等效的寄生电容,Csother为变压器其它的寄生电容,如RC吸收、引线等产生的等效电容,n为变压器原副边变比。因此图3电路可以简化等效为图4所示的电路。以下我们结合图4的等效电路,将整个电路划分为多个电路模式进行具体分析模式1t0时刻 能量反馈结束超前桥臂中Q1导通,滞后桥臂中Q4导通,其体二极管靠谐振电感的能量续流,电感能量回馈给输入电源,原边电流线性下降,下降的斜率为Vin/Lr;输出二极管DR1,DR2续流,变压器被短路,输出电流线性下降。一般输出纹波较小,为分析简单起见,可以认为输出电感电流为恒定Io。t0时刻,原边电流下降到零,因此称作能量反馈结束时刻。模式2t0-t1电流线性上升阶段t0时刻原边电流过零后反向,电流从电源通过Q1、谐振电感、变压器到Q4后回到输入电源负端。电感电压为输入电压,原边电流线性上升,ILr(t)=VinLr*(t-t0).]]>副边二极管DR1,DR2继续导通,变压器被短路。t1时刻ILr达到Io/n。n为变压器的匝比。此阶段输出二极管DR1的电流线性上升,DR2电流线性下降,其关系为 IDR1(t)=Io/2+nILr(t)/2;IDR2(t)=Io/2-nILr(t)/2;IDR1(t0)=IDR2(t0)=Io/2在本文档来自技高网...

【技术保护点】
一种带有箝位电路的软开关全桥移相电路,包括全桥变换器、变压器(T1)、输出二极管(DR1、DR2或DR1、DR2、DR3、DR4)和辅助电感(Lr),所述全桥变换器开关桥臂接于正负输入母线上,变压器(T1)原边与辅助电感(Lr)串联后接于全桥变换器两开关桥臂中点,变压器(T1)副边两端分别接输出二极管(DR1、DR2或DR1、DR2、DR3、DR4),其特征是:在所述谐振电感(Lr)上增设一个第二绕组--箝位绕组,该箝位绕组的一端与开关桥臂中点上接辅助电感(Lr)的端点连接,另一端分别通过第一箝位二极管(D5)和第二箝位二极管(D6)箝位在正负输入母线上。

【技术特征摘要】

【专利技术属性】
技术研发人员:张华健吕明海王国泳黄伯宁
申请(专利权)人:艾默生网络能源有限公司
类型:发明
国别省市:94[中国|深圳]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1