一种叶片裂纹长度参数在线识别方法技术

技术编号:32635908 阅读:18 留言:0更新日期:2022-03-12 18:10
本发明专利技术提供一种叶片裂纹长度参数在线识别方法,包括如下步骤:首先,建立转子

【技术实现步骤摘要】
一种叶片裂纹长度参数在线识别方法


[0001]本专利技术涉及旋转机械故障诊断
,具体为一种叶片裂纹长度参数在线识别方法。

技术介绍

[0002]燃气轮机、汽轮机、涡轮增压器等大型旋转机械中的转子上安装有大量的各级叶片。由于叶片的工作环境一般是高温高压高转速等极端恶劣条件,所以叶片在工作中不仅承受工质随着温度变化带来的交变应力,还要承受工质气体的腐蚀作用以及与机壳碰撞摩擦等突变载荷的作用。在这种工作条件下,叶片极易产生疲劳裂纹。叶片产生裂纹后其刚度和强度会受到严重的削弱,并因此大大降低了整个机组的安全系数,使得运行过程中存在很大的安全隐患。一旦发生由于叶片裂纹导致的叶片断裂,整个机组将产生严重不可逆的破坏,对稳定生产和工程师的生命安全造成极大的威胁。因此,需要一种可靠的方法能够快速识别叶片在运行过程中存在的裂纹以及裂纹程度是否会影响机组的安全运行。
[0003]目前,针对旋转机械中叶片裂纹故障诊断的技术手段主要有着色法、图像识别法、超声检测、声信号检测和模态测试法几种。在专利名称为“一种基于平衡电磁技术的裂纹检测装置及方法”(CN112782271A)的公开内容中,主要利用U型结构的电磁装置使得叶片表面的电磁平衡,并通过检测叶片表面磁场与涡流场的畸变观测叶片表面是否存在裂纹缺陷。通过涡流效应和电磁场的畸变来识别金属叶片表面的裂纹具有较高的测量精度,与此同时,对叶片的形状和材质也具有较高的要求,对于具有预扭角和复合材料的叶片具有较大的局限性。
[0004]另外,专利名称为“一种基于声发射的航空发动机叶片裂纹源定位方法”(CN112461934A)的专利使用VMD相对熵算法提取最佳观测声发射信号,并通过AIC算法实现对声发射信号到达时间的重采样,根据时差矩阵算法完成模拟叶片故障源的定位。此外,专利名称为“一种基于图像识别的外物损伤截面微裂纹快速成像方法”(CN110988002A)的专利,通过空气炮法预制FOD损伤,并对损伤叶片的FOD位置进行纵向剖切,从而获得微裂纹观测样件。然后通过图像识别技术得到微裂纹特征对应的坐标值。
[0005]声发射检测叶片裂纹对测试环境要求很高,嘈杂的环境不仅会降低测试结果的准确性,还会对数据处理算法提出较高的要求。图像识别法虽然能够很直观高效的识别出叶片表面的微裂纹,但其对检测环境、工件表面光洁度等的要求同样很高。
[0006]在专利名为“基于振动的通风机叶片裂纹识别方法”(CN105866250A)的专利中提出,根据叶片局部固有频率的相对变化量来识别裂纹的严重程度,并建立一个相似度判据来衡量损伤发生的位置。叶片存在裂纹时,其刚度会变小,从而导致其固有频率发生变化。因此,根据叶片固有频率的变化量来判断裂纹的程度是一种可靠的方式。但是,这种检测方法需要整个机组离线停机,而且加速度传感器的密度也会影响检测的精度,工程应用难度较大。
[0007]因此,对于旋转机械叶片裂纹故障的在线识别,需要提供一种工程适用性强,检测
精度高的方法。针对上述要求,本专利利用叶片裂纹与转子扭转振动之间的映射关系,通过研究叶片存在不同长度的裂纹参数时转子扭转振动的动力学特征,达到在线识别系统安全运行对叶片裂纹长度参数的最低要求。

技术实现思路

[0008]本专利技术的目的是为了解决现有裂纹识别方法对测试环境要求高,在线识别裂纹长度与转子动力学特征的映射关系不明显和工程适用性不足等缺点的一种叶片裂纹长度参数在线识别方法。
[0009]本专利技术的目的是这样实现的:
[0010]一种叶片裂纹长度参数在线识别方法,包括以下步骤:
[0011]步骤1:建立转子

轴承

叶片系统的物理模型,包括驱动电机,转子,轴承,叶片,磁电传感器,数据采集仪和搭载数据处理软件的上位机;
[0012]步骤2:通过测试获得不同叶片裂纹长度参数下转子扭转振动的动力学幅频特性;
[0013]步骤3:根据所测得的幅频特性结果获得叶片裂纹长度参数与转子扭转振动之间的一一映射关系。
[0014]进一步的,所述步骤2中的叶片裂纹长度参数是可调整的。
[0015]进一步的,所述步骤2中的扭转振动由转子的瞬时转速转化为瞬时角速度后获得。
[0016]进一步的,所述步骤3中的幅频特性为对时域中的瞬时角速度进行快速傅里叶变换后得到的频域结果。
[0017]进一步的,所述步骤3中的一一映射关系为频域结果中某频率分量的幅值随叶片裂纹长度参数的改变而有规律的变化。
[0018]与现有技术相比,本专利技术的有益效果是:
[0019]本专利技术在实际工程中通过在线实时获得叶片裂纹长度参数与转子扭转振动动力学特性的一一映射关系来识别叶片裂纹长度参数对转子

轴承

叶片系统的影响。当叶片裂纹的长度参数扩大到一定程度后,转子的扭转振动幅值将急剧增大,从而超过转子系统的安全阈值。本专利技术利用这种清晰的物理逻辑关系,能够准确高效的识别出叶片裂纹长度参数的安全范围。因此,本专利技术对叶片裂纹长度参数的在线识别具有较高的可靠性和实际工程意义。
附图说明
[0020]图1为本专利技术转子

轴承

叶片系统的物理模型示意图;
[0021]图2为本专利技术2000r/min时不同叶片裂纹长度参数下转子的幅频特性曲线;
[0022]图3为本专利技术3000r/min时不同叶片裂纹长度参数下转子的幅频特性曲线。
具体实施方式
[0023]下面结合附图与具体实施方式对本专利技术作进一步详细描述。
[0024]步骤1:结合附图1,建立转子

轴承

叶片系统的物理模型,包括驱动电机,转子,轴承,叶片,磁电传感器,数据采集仪和搭载数据处理软件的上位机;
[0025]步骤2:所述的驱动电机带动转子

轴承

叶片系统稳定旋转;
[0026]步骤3:所述的磁电传感器,数据采集仪和上位机组成测试系统,采集,记录,实时处理转子的瞬时转速n,获得转子瞬时扭转角的时域结果S(t);
[0027][0028]步骤4.:结合附图2,所述幅频特性为时域中的瞬时扭转角的时域结果S(t)进行快速傅里叶变换后得到的频域结果;
[0029][0030]步骤5:结合附图2,所述的幅频特性曲线中,二阶频率(66.45Hz)分量的扭转角幅值随着叶片裂纹长度参数的增加而逐渐变大,根据这一变化规律,能够清晰的判断出叶片裂纹长度参数与转子扭转振动之间的映射关系;
[0031]步骤6:结合附图3,当转速达到3000r/min时,转子的扭转振动在裂纹长度达到35mm时,出现急剧增大的现象,说明此时转子

轴承

叶片系统已经失稳产生故障;据此判断可以说明本专利技术,能够通过转子的幅频特性曲线准确、快速的识别出叶片裂纹的长度参数是否能够影响转子
‑<本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种叶片裂纹长度参数在线识别方法,其特征是,包括以下步骤:步骤1:建立转子

轴承

叶片系统的物理模型,包括驱动电机,转子,轴承,叶片,磁电传感器,数据采集仪和搭载数据处理软件的上位机;步骤2:通过测试获得不同叶片裂纹长度参数下转子扭转振动的动力学幅频特性;步骤3:根据所测得的幅频特性结果获得叶片裂纹长度参数与转子扭转振动之间的一一映射关系。2.根据权利要求1所述的一种叶片裂纹长度参数在线识别方法,其特征是:所述步骤2中...

【专利技术属性】
技术研发人员:陈彬赵靓珂董烈祎率志君王东华郭宜斌李宏亮李玩幽
申请(专利权)人:哈尔滨工程大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1