热能表用温差发电器制造技术

技术编号:3219654 阅读:211 留言:0更新日期:2012-04-11 18:40
本发明专利技术公开了一种管道式热能表用的温差发电器,它是在其热源管2外壁有若干个集热块3,分别固定一块温差电换能器4和配套的散热器5。热源管2串接入供热管道后,当供热管内有热水流过时,热量便由集热块传送到换能器,余热由紧贴在换能器冷面的散热器散发到周围空间去,在换能器的两面形成温度差。由于温差电元件的塞贝克效应,在换能器的输出端产生温差电动势(即开路电压),经过升压稳压模块变换,为热能表提供稳定的额定电压。由于温差电换能器和升压稳压模块是固态器件,且为聚氨酯泡沫塑料密封,能够长期、连续、安全、稳定地工作。(*该技术在2019年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及一种管道式供热能表用的温差发电器,属于物理电源
二十世纪九十年代以来,随着人民生活水平的提高,社会公众环境保护意识的强化,冬季取暖采用集中供热的方式已成为现代城市建设的发展方向。为了规范供热方与取暖周户之间的费用结算,欧、美等工业发达国家采用热能表来计量供热量。据了解,我国有关部门决定在采暖地区逐步推广采暖热能表。目前,国外一般使用交流电或高能锂电池作为热能表电源(见丹麦Kamtrup公司产品介绍)。采用交流电作仪表电源时,停电期间无法记录供热量。热能表内部流动高压(约1.0兆帕)、高温(70~80℃)热水,如果仪表电路渗入水份或者电源线路损坏,可能使整个供暖管道带有220伏交流电,后果严重。采用高能锂电池(锂—亚硫酰氯电池)作电源,需要定期更换,而且该电池存在易于爆炸的隐患,一般不适合家庭用。温差发电器是固态电源,属于物理电源中的一类特种电源。它是利用碲化铅、碲化铋等化合物半导体的温差电效应而制成的。现有温差发电器大多采用放射性同位素或烃类燃料燃烧作为热源,用于深空宇宙飞行器、无人值守气象站、输油气管道阴极保护等场合。现有温差发电器的结构不能用作热能表电源。温差发电器是一种软输出特性的电源,即输出电压随着负载的大小而变化,为了提供稳定的工作电压,必须附加稳压电路。由于热能表功耗是毫瓦级,工作电压为5伏±0.2伏。在此功率范围内的温差发电器输出电压只有0.8~1伏,不能满足热能表的电压要求。本专利技术的目的是针对上述问题,提供一种作热能表电源的温差发电器。它利用供热管道内的热水作热源,通过温差电换能器和内置电子升压稳压模块,能长期、安全、连续地为热能表提供稳定电流,无须维护,不用附加其它能源。本专利技术的实施方案是这样的在热源管2外壁的集热块3上分别固定一块温差电换能器4和配套的铝质散热器5,在热源管2和散热器5之间的空隙处注入聚氨脂发泡剂,形成一个致密的隔热层8,并且将升压稳压模块6与换能器连接后密封在隔热层中,用导线将升压稳压模块的输出接到外部,构成热能表用的温差发电器。通过法兰1(或螺纹)将温差发电器的热源管2和热能表的流量计串接。当供热管内有热水流过时,热量便由热源管2管壁上的集热块3传送到平板型换能器4,余热由紧贴在换能器4上的散热器5散发到周围空间去,在换能器4的两面形成一定温度差ΔTD℃。由于换能器4内部温差电元件的塞贝克效应(即温差电效应),在换能器的输出端产生温差电动势E(即开路电压)E=NαPNΔTi其中αPN为一对温差电元件的平均温差电动势率,单位为微伏/℃;N为换能器内串联的温差电元件对数;ΔTi为温差电元件冷、热端的温度差,其数值近似等于换能器两端的度差ΔTD单位为℃。虽然,换能器输出的工作电流I=E/(r+RL)是不稳定的,但是经过升压稳压模块6的变换后,温差发电器就能输出稳定的额定电压了。与现有技术相比,本专利技术具有下列优点(1)安全,不存在触电和爆炸的隐患;(2)能长期连续工作。因为温差电换能器和升压稳压模块属固态器件,而且又经聚氨脂泡沫塑料密封,隔水、防空气氧化,使用寿命大于15年。只要热源管中有热水流动,就能提供电源,省去了更换电池的麻烦。(3)温差电换能器输出电压经升压稳压模块变换后,能满足热能表的额定要求,且不受热水温度、环境温度、负载电流波动的影响。(4)结构简单,工作期间不用附加其它能源,而且无须维护,因此,总的使用成本低。下面结合附图和实施例对本专利技术作进一步详细说明。附附图说明图1为本专利技术实施例1的热能表用温差发电器的剖面示意图附图2为本专利技术实施例2的热能表用温差发电器的剖面示意图附图3为升压稳压模块的电气原理图。下面结合附图和实施例对本专利技术作进一步详细说明。实施例1通径为DN 80毫米供热干管的热能表用的温差发电器。在附图1中,热源管2为铸铁、钢或黄铜管制成,两端有连接法兰1,可以接入供热管道。热源管2内径为80毫米,壁厚6毫米。法兰1外径为200毫米,8个螺栓孔的中心距为160毫米,其余尺寸均参考国家标准(GB9114~9116、9119、9123-88)。热源管2长度为240毫米,在其中段加工两个平台集热块3,对称分布在管壁两侧。平台的顶部为一个45毫米×45毫米的平面(光洁度为3.2),根部截面尺寸为60毫米×60毫米,有利于采集热流。两个平面应平行。在外壁加工两个宽2毫米、深2毫米的环形凹槽,位于集热块的两侧,间隔为100毫米,便于安装密封板7。换能器4采用平板式结构,上、下两块平板为陶瓷片或表面绝缘处理的铝板。按设计要求对平板进行金属化图形处理,以便能够焊接温差电元件。温差电元件采用碲化铋基合金材料制成。应用钎焊技术,将127对P型和N型温差电单体通过铜互联片(厚0.5毫米)以串联的方式焊接在两块陶瓷片之间,形成一个截面积为40毫米×40毫米的平板型温差电换能器。铝散热器5基板厚4毫米,外侧有13片肋片,外缘呈半圆弧形,半径为90毫米,肋片顶部厚1.5毫米,根部厚3毫米,肋片间隔5毫米,散热器总宽度为100毫米。散热器基板内侧中央有一四方棱台,端面尺寸为45毫米×45毫米,是与换能器4接触的部位。用M4规格的不锈钢螺钉将散热器5和换能器4固定在集热块3上,换能器4两侧均匀涂一薄层导热硅脂,减少接触面的热阻,提高热电转换效率。在散热器5和热源管2之间的空腔内,注入聚氨脂发泡剂,形成一个致密的隔热层8,同时保护换能器内的半导体材料,也加强了发电器自身的机械强度。将两块换能器4的输出线串联起来,接入升压稳压模块6。在附图3中,IC1采用美国美信公司的步升式直流变换器电路,其它元件均见图中标示。当输入电压或负载电流变化时,IC1自动调节脉冲频率,稳定输出电压为额定值。用环氧树脂把整个电路板封在一个模块内,成为一个三端升压稳压模块。将该模块埋入密封板7和散热器5之间的聚氨脂泡沫塑料8中,其输出电源线从密封板7钻孔引出,然后用热溶胶密封固定。为了便于热能表安装测试传感器,在热能管2上加工一个传感器安装管9,高为70毫米,安装螺纹为G1/2B。实施例2通径为DN20毫米的户用采暖热能表用的温差发电器。在附图2中,热源管2为钢或黄铜制成,两端联接螺纹为G1B,可以接入供热管道。热源管2内径为20毫米,壁厚4毫米,散热器基板为一个100毫米×100毫米×4毫米的铝板上侧有15片肋片,肋片高25毫米,顶部厚1.5毫米,根部厚3毫米。该散热器可用铝型材截成。本例中集热块3,换能器4,升压稳压模块6,密封板7,密封隔热泡沫塑料8均和实施例1相同。本文档来自技高网...

【技术保护点】
一种管道式供热能表用的温差发电器,由热源体、温差电换能器、散热器、隔热密封层组成,其特征在于:其中的热源体是由热源管[2]、集热块[3]构成,各集热块分别固定一块温差电换能器[4]和配套的铝质散热器[5],所述的隔热密封层是聚氨酯泡沫塑料,该密封层填充在散热器[5]和热源管[2]之间的空隙处,所述的发电器还包括一个升压稳压模块[6],将换能器[4]的输出电压进行变换,为热能表提供稳定的电源。

【技术特征摘要】
1.一种管道式供热能表用的温差发电器,由热源体、温差电换能器、散热器、隔热密封层组成,其特征在于其中的热源体是由热源管[2]、集热块[3]构成,各集热块分别固定一块温差电换能器[4]和配套的铝质散热器[5],所述的隔热密封层是聚氨酯泡沫塑料,该密封层填充在散热器[5]和热源管[2]之间的空隙处,所述的发电器还包括一个升压稳压模块[6],将换能器[4]的输出电压进行变换,为热能表提供稳定的电源。2.根据权利要求1所述的温差发电器,...

【专利技术属性】
技术研发人员:刘尧光王凤跃赵彦民
申请(专利权)人:电子工业部第十八研究所
类型:发明
国别省市:12[中国|天津]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1