场效应晶体管及其制造方法技术

技术编号:3195918 阅读:133 留言:0更新日期:2012-04-11 18:40
一种场效应晶体管,其包括一第一导电类型的半导体层;一第二导电类型的源极区域与一第二导电类型的漏极区域分别形成于上述半导体层,该源极区域与该漏极区域相距一定距离;一绝缘氧化层形成于上述半导体层,且位于上述源极区域与漏极区域之间;一源极电极、一漏极电极与一栅极电极分别形成于上述源极区域、漏极区域与绝缘氧化层,其中,该半导体层为一半导体性的碳纳米管层。

【技术实现步骤摘要】

本专利技术涉及一种场效应晶体管,尤其涉及一种基于碳纳米管的场效应晶体管及其制造方法
技术介绍
自从第一个IC(Integrated Circuit)诞生以来,以硅器件为基础的微处理器产品的研发与制造在摩尔定律下以每18个月晶体管的数量翻一番的速度极速发展着。到2002年,微处理器已经含有7600万个晶体管,能够实现非常强大的功能。然而,科学界普遍认为摩尔定律不会永远有效,50纳米是现代半导体工艺的极限,而Intel的最新工艺是0.13微米,即硅极限将在10~15年内到达。硅器件的基础是硅原子组成的晶体。晶体中硅原子不连续的能极构成了能量带,半导体中的电子在能量带中运动。能带的能量远远大于硅原子能极的能量,它会使电子从原子的特定能级中逸出。如果硅片上晶体管尺寸非常小,能带导致的电子选出就会产生相邻晶体管之间严重漏电,造成电子开关无法“关断”。另外,晶体管尺寸过小也会给散热造成巨大困难。这些物理性的难题将使提高硅器件集成度的成本越来越高。自从1991年,Ijima发现碳纳米管(具体参见Nature,1991,354,56)以来,1998年,IBM与NEC合作成功地用一根半导体性的碳纳米管制成场效应晶体管(具体参见Applied Physics Letters,1998,73,2447),从而拉开了用碳器件取代硅器件的序幕。该基于一根碳纳米管的晶体管体现出良好地电学性能,当栅极电压变动时,源极漏极间的电导变化为10万倍。由于碳纳米管的尺寸非常小,据预测,如果用碳纳米管制成器件,其晶体管的密度可比当前最先进的0.13微米硅器件高6万倍。然而,上述用单根碳纳米管制备的场效应晶体管需要采用特殊制备工艺,如使用原子力显微镜(AFM,Atom Force Microscope)进行加工,制备成本非常高,仅适合用于实验阶段,不适合于大规模生产。因此,提供一种制备方法简单、成本低、热性能好的场效应晶体管十分必要。
技术实现思路
为解决现有技术的技术问题,本专利技术的目的是提供一种制备方法简单、成本低、热性能好的场效应晶体管。本专利技术的另一目的是提供此种场效应晶体管的制备方法。为实现本专利技术的目的,本专利技术提供一种场效应晶体管,其包括一第一导电类型的半导体层;一第二导电类型的源极区域与一第二导电类型的漏极区域分别形成于上述半导体层,该源极区域与该漏极区域相距一定距离;一绝缘氧化层形成于上述半导体层,且位于上述源极区域与漏极区域之间;一源极电极、一漏极电极与一栅极电极分别形成于上述源极区域、漏极区域与绝缘氧化层,其中,该半导体层为一半导体性的碳纳米管层。本专利技术碳纳米管层中碳纳米管的直径为2~10纳米,高度为20~500纳米,绝缘氧化层的材料为二氧化硅。为实现本专利技术的另一目的,本专利技术还提供一种制备此种场效应晶体管的方法,包括以下步骤提供一第一导电类型的半导体性碳纳米管层衬底;在上述碳纳米管层衬底形成第二导电类型的源极区域与漏极区域,该源极区域与漏极区域相距一定距离;在碳纳米管衬底上、源极区域与漏极区域之间形成一绝缘氧化层;分别设置金属电极于上述源极区域、漏极区域与绝缘氧化层上。与现有技术相比较,本专利技术的场效应晶体管具有如下优点其一,直接采用碳纳米管层替代传统场效应晶体管的硅衬底,能够与传统硅工艺技术相结合,适合大规模生产应用;其二,碳纳米管本身具有极高的导热系数,达到400~1000Watt/mK,因而可以有效地将晶体管工作所产生的热量快速散掉,从而解决当集成度提高所存在的散热问题;其三,由于采用碳纳米管作为衬底,其纳米级加工可以使得目前硅器件0.13微米的工艺变得更小,如60纳米以下,所以每个晶体管之尺寸会变得更小,且由于碳原子本身比硅原子稳定,可以实现以更少的电子移动来完成晶体管的开关功能,从而能够减少系统热量的产生。附图说明图1是本专利技术的场效应晶体管的示意图。图2是本专利技术的场效应晶体管的制备方法的示意图。具体实施方式下面将结合附图及具体实施例对本专利技术进行详细说明。请参阅图1,本专利技术提供一种场效应晶体管11,其包括一P型碳纳米管层12衬底;一N型掺杂区域作为源极区域13与一N型掺杂区域作为漏极区域14分别形成于上述P型碳纳米管层12,该源极区域13与漏极区域14相距一定距离;一绝缘氧化层15形成于上述P型碳纳米管层12上,且位于上述源极区域13与漏极区域14之间;一源极电极131、一漏极电极141及一栅极电极151分别形成于上述源极区域13、漏极区域14与绝缘氧化层15上。其中,本实施例的绝缘氧化层15为二氧化硅层,金属电极选自铝、金或铜电极。本专利技术进一步提供一种场效应晶体管11的制备方法,其包括以下步骤步骤10是提供一P型碳纳米管层衬底;步骤20是在上述P型碳纳米管层衬底相距一定距离通过离子注入方法进行掺杂,形成N型的源极区域与漏极区域,其中本实施例采用磷离子进行掺杂;步骤30是在碳纳米管层衬底上、源极区域与漏极区域之间形成一绝缘氧化层;步骤40是分别设置金属电极于上述源极区域、漏极区域与绝缘氧化层上,分别形成场效应晶体管的源极电极、漏极电极与栅极电极。本专利技术碳纳米管层衬底的形成方法包括以下步骤提供一基底,基底材料可选自碳、玻璃或硅;在基底上沉积一催化剂层,催化剂层的厚度为5~30纳米,催化剂层沉积的方法可选用真空热蒸镀挥发法,也可选用电子束蒸发法。催化剂的材料可选用铁、钴、镍、铂、钯或其合金,本实施方式选用铁作为催化剂材料,其沉积的厚度为10纳米;将带有催化剂层的基底置于空气中,退火以使催化剂层氧化、收缩成为纳米级的催化剂颗粒。待退火完毕,再将分布有催化剂颗粒的基底置于反应室内(图未示),通入碳源气乙炔以及保护气体氩气,利用低温热化学气相沉积法,在上述催化剂颗粒上生长碳纳米管,形成碳纳米管薄膜,碳源气亦可选用其它含碳的气体,如乙烯、苯、一氧化碳等。其中,以苯作为碳源气时,其保护气体应选用氢气,以一氧化碳作为碳源气时,其催化剂应选用五羰基铁Fe(CO)5。本专利技术生成的碳纳米管的直径为2~10纳米,高度为20~500纳米,低温化学气相沉积法的生长温度为550~600摄氏度。本实施例的场效应晶体管11为P沟道金属氧化物半导体场效应晶体管,本领域的技术人员应明白,对N型碳纳米管层衬底进行P型掺杂即可形成N沟道型金属氧化物半导体场效应晶体管。同样,用半导体型碳纳米管层取代传统晶体管的硅衬底亦可形成结型场效应晶体管,绝缘栅型场效应晶体管等其它场效应晶体管。本专利技术的场效应晶体管具有如下优点其一,直接采用碳纳米管层替代传统场效应晶体管的硅衬底,能够与传统硅工艺技术相结合,适合大规模生产应用;其二,碳纳米管本身具有极高的导热系数,达到400~1000Watt/mK,因而可以有效地将晶体管工作所产生的热量快速散掉,从而解决当集成度提高所存在的散热问题;其三,由于采用碳纳米管作为衬底,其纳米级加工可以使得目前硅器件0.13微米的工艺变得更小,如60纳米以下,所以每个晶体管的尺寸亦变得更小,且由于碳原子本身比硅原子稳定,可以实现以更少的电子移动来完成晶体管的开关功能,从而能够减少系统热量的产生。本文档来自技高网
...

【技术保护点】
一种场效应晶体管,其包括一第一导电类型的半导体层;一第二导电类型的源极区域与一第二导电类型的漏极区域分别形成于上述半导体层,该源极区域与该漏极区域相距一定距离;一绝缘氧化层形成于上述半导体层,且位于上述源极区域与漏极区域之间;一源极电极、一漏极电极与一栅极电极分别形成于上述源极区域、漏极区域与绝缘氧化层,其特征在于,该半导体层为一半导体性的碳纳米管层。

【技术特征摘要】
1.一种场效应晶体管,其包括一第一导电类型的半导体层;一第二导电类型的源极区域与一第二导电类型的漏极区域分别形成于上述半导体层,该源极区域与该漏极区域相距一定距离;一绝缘氧化层形成于上述半导体层,且位于上述源极区域与漏极区域之间;一源极电极、一漏极电极与一栅极电极分别形成于上述源极区域、漏极区域与绝缘氧化层,其特征在于,该半导体层为一半导体性的碳纳米管层。2.如权利要求1所述的场效应晶体管,其特征在于该碳纳米管层中碳纳米管的直径为2~10纳米,高度为20~500纳米。3.如权利要求1所述的场效应晶体管,其特征在于该第一导电类型为P型,第二导电类型为N型。4.如权利要求1所述的场效应晶体管,其特征在于该第一导电类型为N型,第二导电类型为P型。5.如权利要求1所述的场效应晶体管,其特征在于该绝缘氧化层的材料为二氧化硅。6.一种场效应晶体管的制备方法,包括以下步骤提供一第一导电类型的半导体性碳纳米管层衬底;在上述碳纳米管层衬底形成第二导电类...

【专利技术属性】
技术研发人员:陈杰良
申请(专利权)人:鸿富锦精密工业深圳有限公司鸿海精密工业股份有限公司
类型:发明
国别省市:94[中国|深圳]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1