当前位置: 首页 > 专利查询>周志恒专利>正文

多通道信号增益控制系统及其控制方法技术方案

技术编号:3152207 阅读:148 留言:0更新日期:2012-04-11 18:40
本发明专利技术为多通道信号增益控制系统及其控制方法。本发明专利技术公开了一种非分光光谱类化学分析仪器中用到的多通道信号增益控制系统和方法。利用光电倍增管阴极偏置电压可以控制光电倍增管放大倍数的特性,选用2至12路光电倍增管电源控制单元,将其产生的负高压经过导线连接到固态继电器的输入端,固态继电器根据信号发生器的指令选择一路负高压连接到光电倍增管的阴极,从而改变光电倍增管的放大倍数。提高多通道信号增益控制电路的灵敏度。使非分光光谱类化学分析仪器能够检测更多的样品,检测更广泛的样品浓度。

【技术实现步骤摘要】

本专利技术属于一种光、机、电一体化的化学分析仪器,尤其涉及一种非分光光谱类化学分析仪器中用到的多通道信号增益控制装置,应用于针对原子荧光光谱仪中。
技术介绍
原子荧光法的分析对象与原子吸收光谱法和原子发射光谱法相同,都可以对数十种元素进行定量分析。但用常规的原子光谱分析方法测定这些元素有很大困难。因为首先这些元素的激发谱线大都落在紫外线区,因此测量灵敏度较低。采用氢化物发生进样方法是利用某些能产生初生态氢的还原剂货通过化学发应,将样品溶液中的待测组分还原为挥发性共价氢化物,然后借助载气流将其导入原子光谱分析系统进行测量的方式。原子吸收分析和原子荧光分析都是基于物质基态原子对光的吸收性质。原子吸收光谱分析是测量光源被分析物质的基态原子吸收前后光强的变化,而原子荧光光谱分析是测量分析物质基态原子被光源激发后,自发发射的荧光强度。所以光源是原子吸收与原子荧光光谱仪的重要组成部分,它的性能指标直接影响分析的检出限、精密度及稳定性等性能。光源包括用于激发被测元素原子光谱的激发光源及用于AAS背景校正的连续光源。用于原子吸收光谱仪的激发光源必须是锐线光源,常用的激发光源有空心阴极灯。空心阴极灯是一种特殊的低压辉光放电灯,当阴极与阳极间施加300-500V电压时(阳极正、阴极负),极间形成一电场,电子在电场作用下,由阴极向阳极运动,并与充人的惰性气体分子发生碰撞,从而使惰性气体分子电离。气体的正离子以极高的速度向阴极运动,并撞击阴极内壁,引起阴极物质溅射。溅射出的阴极元素的原子在空心阴极内形成原子云,原子进一步与气体离子撞击后被激发至高能态。处于高能态的原子很不稳定,会自发回到基态,在由激发态回到基态时以光的形式释放出多余的能量。激发光子的能量等于该原子的激发态与基态的能量差,因此从空心阴极灯射出的激发光的波长严格等于该元素原子的吸收波长。在空心阴极灯的光谱辐射中,除阴极元素的光谱外,还有内充气体、杂质元素及阴极支撑金属材料的光谱。光谱仪器中,监测器用来完成光电信号的转换,即将光信号转换为电信号,为以后的信号处理做准备。常用的检测器是光电倍增管。光电倍增管是一种多极的真空光电管,内部有电子倍增机构,内增益极高,是目前灵敏度最高、响应速度最快的一种光电检测器,广泛应用于各种光谱仪器上。光电倍增管由光窗、光电阴极、电子聚焦系统、电子倍增系统和阳极等5个部分组成。光窗是人射光的通道,同时也是对光吸收较多的部分,波长越短吸收越多,所以光电倍增管光谱特性的短波阈值取决于光窗材料,用于AAS及AFS的光电倍增管的光窗材料常采用能透过紫外线的玻璃或熔融石英。光电阴极的作用是光电变换,接收人射光,向外发射光电子。处于基态的分析元素原子受到特征波长辐射线激发,发出特定波长原子荧光信号,每一种元素都有特定的原子荧光光谱。通过检测,此时荧光的强度,进行定量分析是原子荧光光谱仪的工作原理。许多非分光光谱类化学分析仪器均由光电倍增管作为光电换能部件,它的作用是把检测光的辐射功率转化为电信号。典型的光电倍增管在应用时,其阴极偏置电压相对于阳极为几百伏的负高压,光电倍增管的增益可随阴极偏置电压在几个数量级的范围内调整,非常适合进行微光级别的检测。但是,在实际应用中,通常的做法是在测试中保持光电倍增管的阴极偏置电压为一固定负高压,这样使用光电倍增管,浪费了它的一个优秀功能。在作化学分析时,经常要同时测量多种元素,而各种元素对仪器的灵敏度要求是不同的,一台仪器很很难同时完成这样的工作。目前解决此问题普遍采用的方法有两种。第一种方法是改变灯源强度,第二种方法是改变放大器的放大倍数。这两种方法各有缺点,一,改变灯源强度的方法。这种方法虽然可以调整仪器的增益范围,但是增益被改变的范围却低于一个量级。原因是灯源强度由灯供电电流调节,而电流的可调节范围很窄,超出此范围,仪器电噪声增高、灯源的稳定性变差,降低测试精度。二,改变放大器的放大倍数。仪器的信号放大器一般由多个集成电路构成,进行分级放大,以达到扩大放大器的放大倍数的目的。即便是分级放大,整个放大器的放大倍数也就在1-2个数量级之间,因此放大倍数的可调整范围仍然很小,不能满足多通道样品检测的需求。另外,放大倍数不断改变,使检测仪器丧失了标准性和重复性的最基本功能。对于待测样品中,浓度有明显差异的,不同性质的元素同时进行测定,目前的原子荧光光谱仪的信号检测技术存在着数据可靠性差和准确性不高等缺点,影响原子荧光光谱分析方法在多通道分析中的应用。专利号为03262713.0,名称为多通道原子荧光光谱仪的技术专利中,信号通道原理采用产生的一组元素荧光信号,由电检测器接收后,输出这组混合电信号通过电子开关,在解调信号的控制下被分离后,后级各自的信号处理电路进行再处理。这种信号通道构成的仪器,无法克服在测定上述样品时的不足。本专利技术的优点是采用调节光电倍增管阴极偏置电压的方法来控制光电倍增管的增益,使光电倍增管的增益范围宽大大加宽,可以达到几个数量级。另外,光电倍增管的增益与阴极偏置电压成线性关系,增益与阴极偏置电压的log-log曲线可在几个数量级的增益范围内保持线性。
技术实现思路
本专利技术的目的是提供一种调整多通道信号增益系统及其增益方法,应能满足对于多个信号的增益不同的要求。本专利技术解决其技术问题所采用的方案是多通道信号增益控制系统,包括光电倍增管1,放大器7,数据采集单元8,光电倍增管电源控制单元3。所述数据采集单元8包括信号采集保持电路9和A/D模数转换电路10。所述光电倍增管电源控制单元3包括D/A数模转换电路5和光电倍增管高压电源4。光电倍增管1的信号输出端线路连接到放大器7的信号输入端,放大器7的输出端线路连接到数据采集单元8中信号采集保持电路9的输入端。多通道信号增益控制系统还包括信号发生器6、固态继电器2、信号处理单元11。所述的信号处理单元11包括数据处理装置17、数据判断装置12、数据计算装置13、信号触发控制装置14和负高压控制信号输出装置15和数据信号输出装置16。所述的信号处理单元11用于对采集的信号进行数据判断、数据计算并控制信号发生器6进行时序控制并输出负高压控制信号给光电倍增管电源控制单元3,对光电倍增管1的阴极提供工作负高压。信号处理单元11将进行优化后的数据采集信号进行输出。在实际的系统中所述数据采集单元8中信号采集保持电路9的输出端与A/D模数转换电路10的信号输入端连接;所述A/D模数转换电路10的数据输出端与信号处理单元11的数据输入端连接。所述数据采集单元8中的A/D模数转换电路10将采集的数字信号传输给所述信号处理单元11;信号处理单元11的时序控制指令输出端与所述信号发生器6的输入端连接,信号处理单元11的负高压控制信号输出端与光电倍增管电源控制单元3中的D/A数模转换电路5的输入端连接;所述D/A数模转换电路5的输出信号线路连接到光电倍增管负高压控制模块的输入端,所述的负高压控制模块包括光电倍增管高压电源4和固态继电器2;所述负高压控制模块将负高压加到光电倍增管1的阴极,进行负高压增益。上述负高压控制模块中的光电倍增管高压电源(4)其中一种实施方式为光电倍增管高压电源组;所述D/A数模转换电路5的输出信号线路连接到光电倍增管高压电源组4的输入端,光电倍增本文档来自技高网
...

【技术保护点】
多通道信号增益控制系统,包括光电倍增管(1),放大器(7),数据采集单元(8),光电倍增管电源控制单元(3);所述数据采集单元(8)包括信号采集保持电路(9)和A/D模数转换电路(10);所述光电倍增管电源控制单元(3)包括D/A数模转换电路(5)和光电倍增管高压电源(4);光电倍增管(1)的信号输出端线路连接到放大器(7)的信号输入端,放大器(7)的输出端线路连接到数据采集单元(8)中信号采集保持电路(9)的输入端;其特征是:所述多通道信号增益控制系统还包括信号发生 器(6)、固态继电器(2)、信号处理单元(11);所述的信号处理单元(11)包括数据处理装置(17)、数据判断装置(12)、数据计算装置(13)、信号触发控制装置(14)和负高压控制信号输出装置(15)和数据信号输出装置(16);所述的信号处理单元(11)用于对采集的信号进行数据判断、数据计算并控制信号发生器(6)进行时序控制并输出负高压控制信号给光电倍增管电源控制单元(3),对光电倍增管(1)的阴极提供工作负高压;信号处理单元(11)将进行优化后的数据采集信号进行输出。

【技术特征摘要】
1.多通道信号增益控制系统,包括光电倍增管(1),放大器(7),数据采集单元(8),光电倍增管电源控制单元(3);所述数据采集单元(8)包括信号采集保持电路(9)和A/D模数转换电路(10);所述光电倍增管电源控制单元(3)包括D/A数模转换电路(5)和光电倍增管高压电源(4);光电倍增管(1)的信号输出端线路连接到放大器(7)的信号输入端,放大器(7)的输出端线路连接到数据采集单元(8)中信号采集保持电路(9)的输入端;其特征是所述多通道信号增益控制系统还包括信号发生器(6)、固态继电器(2)、信号处理单元(11);所述的信号处理单元(11)包括数据处理装置(17)、数据判断装置(12)、数据计算装置(13)、信号触发控制装置(14)和负高压控制信号输出装置(15)和数据信号输出装置(16);所述的信号处理单元(11)用于对采集的信号进行数据判断、数据计算并控制信号发生器(6)进行时序控制并输出负高压控制信号给光电倍增管电源控制单元(3),对光电倍增管(1)的阴极提供工作负高压;信号处理单元(11)将进行优化后的数据采集信号进行输出。2.根据权利要求1所述的多通道信号增益控制系统,其特征是所述数据采集单元(8)中信号采集保持电路(9)的输出端与A/D模数转换电路(10)的信号输入端连接;所述A/D模数转换电路(10)的数据输出端与信号处理单元(11)的数据输入端连接;所述数据采集单元(8)中的A/D模数转换电路(10)将采集的数字信号传输给所述信号处理单元(11);信号处理单元(11)的时序控制指令输出端与所述信号发生器(6)的输入端连接,信号处理单元(11)的负高压控制信号输出端与光电倍增管电源控制单元(3)中的D/A数模转换电路(5)的输入端连接;所述D/A数模转换电路(5)的输出信号线路连接到光电倍增管负高压控制模块的输入端所述的负高压控制模块包括光电倍增管高压电源(4)和固态继电器(2);所述负高压控制模块将负高压加到光电倍增管(1)的阴极;信号发生器(6)产生时序控制信号给固态继电器(2),控制当前通道继电器的状态;信号发生器(6)的另一时序控制信号线路连接到数据采集单元(8),控制数据采集单元(8)对当前通道的元素进行荧光数据采集;信号处理单元(11)中数据处理装置(17)用于对各通道元素采集的信号数据进行数据积分计算处理;数据判断装置(12)是对各通道采集元素的信号数据进行判优的装置,即判断通道的信号数据是否需要进行负高压增益优化的过程;信号处理单元(11)中的数据计算装置(13)计算各通道元素进行负高压增益调整数值;所述信号触发控制装置(14)用于触发所述信号发生器(6),进而进行时序控制;所述负高压控制信号输出装置(15)将负高压数值传输给光电倍增管电源控制单元(3),产生负高压提供给光电倍增管(1);所述数据信号输出装置(16)输出各通道元素采集数据信号。3.根据权利要求1或2所述的多通道信号增益控制系统,其特征是所述负高压控制模块中的光电倍增管高压电源(4)为光电倍增管高压电源组;所述D/A数模转换电路(5)的输出信号线路连接到光电倍增管高压电源组4的输入端,光电倍增管高压电源组(4)的输出电压线路连接到固态继电器(2)的输入端,固态继电器(2)的输出端线路连接到光电倍增管(1)的阴极;所述的D/A数模转换电路(5)的输出端产生2至12路输出信号,D/A数模转换电路(5)的2至12路输出信号线路连接到光电倍增管高压电源组(4)的输入端,光电倍增管高压电源组(4)产生2至12路的输出信号,光电倍增管高压电源组(4)的2至12路输出信号线路连接到固态继电器(2)的输入端,固态继电器(2)的受控端接收信号发生器(6)的时序指令,选择光电倍增管高压电源组(4)的一路提供给光电倍增管(1)。4.根据权利要求1或2所述的多通道信号增益控制系统,其特征是所述负高压控制模块中的光电倍增管高压电源(4)为单个光电倍增管高压电源;所述D/A数模转换电路(5)的输出...

【专利技术属性】
技术研发人员:周志恒
申请(专利权)人:周志恒
类型:发明
国别省市:11[中国|北京]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利