当前位置: 首页 > 专利查询>同济大学专利>正文

一种提升高含固污泥厌氧消化性能方法技术

技术编号:30704627 阅读:22 留言:0更新日期:2021-11-06 09:47
本发明专利技术涉及一种提升高含固污泥厌氧消化性能方法,包括:将高含固污泥进行热水解预处理,对高含固污泥进行传质改善和有机物强化溶出;将预处理后得到的产物作为底物,进行产酸发酵,产酸过程耦合第一级微生物电解池,构成一级耦合增强模组;将发酵产酸后得到的液相与气相产物再次作为底物,进行厌氧消化产甲烷,产甲烷过程耦合第二级微生物电解池,构成二级耦合增强模组。与现有技术相比,本发明专利技术将热水解预处理耦合两级微生物电解池技术引入到高含固污泥厌氧消化系统中,达到分级分相反应的目的;在改善高含固污泥传质效率和促进有机物溶出的同时进一步加强了有机物的定向转化;在速度与效率上都实现了高含固污泥厌氧消化技术的优化。术的优化。术的优化。

【技术实现步骤摘要】
一种提升高含固污泥厌氧消化性能方法


[0001]本专利技术涉及污泥厌氧消化
,尤其是涉及一种提升高含固污泥厌氧消化性能方法。

技术介绍

[0002]污泥处理处置是污水处理厂转向未来资源与能源工厂的关键环节。污泥中富集了污水中30~50%的污染物,一方面,其含有易腐物质、重金属、致病菌、寄生虫、POPs、微塑料等有毒有害物质,这些污染物若重回环境,将造成严重的“二次污染”,因此必须对其进行减量化、稳定化、无害化处理处置;另一方面,污泥中含有丰富的有机物与氮、磷等营养元素,是重要的资源“仓库”。厌氧消化技术能促使污泥中有机物减量、稳定,在降低污泥对环境污染的同时回收能源(生物沼气),是现代污水处理厂的重要组成部分。
[0003]传统的污泥厌氧消化工艺底物的含固率通常为2~5%,低含固率污泥所含的大量水分导致反应体系大且耗能高,这也使得厌氧消化技术在工艺上的发展受到限制。近年来,利用高含固率污泥进行厌氧消化的技术得到了一定发展。与传统低含固率污泥厌氧消化技术相比,高含固率污泥厌氧消化呈现出反应器体积小、单位容积产气率高等特点、耗能低等优势。然而,高含固污泥较高的粘度也使得后续的厌氧消化出现了一系列问题,如由于水分缺乏导致的有机物传质受阻、微生物与有机物比例失衡导致的水解及产甲烷效率降低、氨氮的大量积累导致的微生物活性受到抑制等。因此,采取一定的技术手段进一步加强高含固污泥的厌氧消化性能十分有必要。
[0004]高温高压热水解预处理技术能够使得污泥细胞破碎,胞内有机物溶出,快速水解有机物,可大幅度提高高含固污泥厌氧消化系统中生物质能的转化效率并降低整体工艺的能耗。如中国专利文献CN103011542A公开了一种加热法预处理高含固率污泥厌氧消化装置及工艺,在70℃的情况下,加热预处理30~60分钟后将经过预处理之后的污泥加入到厌氧消化罐体内,进行搅拌厌氧消化;中国专利文献CN106430887A公开了一种高含固率污泥厌氧消化产甲烷的方法,调节碳氮比之后进行中温预处理,控制温度为34~38℃,进行厌氧消化,污泥内部传质效率在厌氧消化过程中得到提高。
[0005]然而在以上的厌氧消化系统中,热水解预处理手段的引入也只能是达到改善高含固污泥传质效率,强化其水解的目的,对于提高有机物尤其是难降解有机物的转化率以及系统的产甲烷性能没有发挥过多的作用,限制了热水解和厌氧消化技术的发展与应用。

技术实现思路

[0006]本专利技术的目的就是为了克服上述现有技术存在的缺陷而提供一种提升高含固污泥厌氧消化性能方法,解决了现有技术中高含固污泥在厌氧消化系统中传质性能差,有机物降解性能和产气效率低等问题。
[0007]本专利技术的目的可以通过以下技术方案来实现:
[0008]本技术方案中提供一种提升高含固污泥厌氧消化性能的方法,基于热水解预处理
耦合两级微生物电解池进行分级强化,可以有效改善高含固污泥的传质性能,在促进有机物溶出的同时分相强化有机物定向转化,有效提高产甲烷效率。
[0009]本技术方案中的一种提升高含固污泥厌氧消化性能方法,包括以下步骤:
[0010]S1:将高含固污泥在热水解反应器中进行热水解预处理,以此对高含固污泥进行传质改善和有机物强化溶出;
[0011]S2:将步骤S1预处理后得到的产物作为底物,进行产酸发酵,产酸过程耦合第一级微生物电解池,构成一级耦合增强模组;
[0012]S3:将步骤S2发酵产酸后得到的液相与气相产物再次作为底物,进行厌氧消化产甲烷,产甲烷过程耦合第二级微生物电解池,构成二级耦合增强模组。
[0013]进一步地,所述高含固污泥中总固体质量的含量为15~25wt%,所述高含固污泥中挥发性固体质量占总固体质量的比例为40~65%;
[0014]S1、S2、S3中所采用的整个系统为序批式系统,也可为半连续式或连续式进出料系统。
[0015]进一步地,S1中所述热水解的条件为:温度120~200℃,压力0.4~0.7MPa,时间15~45min,搅拌速度100~200rpm,其中温度升至设定温度后开始计时,到达设定时间后停止加热。
[0016]通过对热水解过程的温度、压力、时间的控制,可优化热水解预处理高含固污泥的效果,达到最大程度的改善传质与有机物溶出。
[0017]进一步地,S2和S3中,均以厌氧消化后的稳定化污泥作为接种污泥;
[0018]其中接种污泥的总固体质量占接种污泥总质量的比例为2~5%,挥发性固体质量占总固体质量的比例为30~50%,底物与接种污泥中挥发性固体的质量比为0.5~5。
[0019]进一步地,S2和S3中,第一级微生物电解池和第二级微生物电解池的电极材料均为铁电极、铁碳电极、石墨电极、玻碳电极中的一种或其中不相同的两种,第一级微生物电解池和第二级微生物电解池的外加电压大为0.3~1.5V,其中第一级微生物电解池的外加电压高于第二级。
[0020]由于阴极产氢所需的电位绝对值高于阴极还原二氧化碳产甲烷,因此,可通过对两级微生物电解池中外加电压大小的调节,结合温度与pH改变来调控阳极和阴极反应,从而实现有机物定向转化。
[0021]进一步地,发酵产酸过程的控制条件为:温度25~55℃,pH 5.0~6.5,停留时间为2~8天。
[0022]进一步地,所述一级耦合增强模组中,电解池阳极微生物中水解酸化细菌为优势微生物,阴极微生物产氢菌为优势微生物,液相发酵产物中挥发性脂肪酸累积产量大于150mg/g VS,气相产物中以H2和CO2为主,H2和CO2相对含量大于80%。
[0023]进一步地,以S2发酵产酸后得到的液相发酵产物作为底物,在第二级微生物电解池的阳极发生反应;
[0024]以S2发酵产酸后得到的气相产物作为底物,在第二级微生物电解池的阴极发生反应。
[0025]进一步地,S3中,所述厌氧产甲烷过程的控制条件为:温度35~45℃,pH 6.5~7.5,停留时间为10~35天。
[0026]进一步地,S3中,所述构成二级耦合增强模组中,电解池阳极微生物中产氢产乙酸细菌为优势微生物,阴极微生物中产甲烷菌为优势微生物,累积甲烷产量大于250mL/g VS。
[0027]本专利技术的原理为,采用合适温度和压力范围的热水解对高含固污泥进行短时的预处理过程,在改善高含固污泥传质和流动性能的同时,强化污泥的有机质溶出。经预处理后的污泥首先进行微生物电解池耦合的产酸发酵过程。
[0028]进一步地,本专利技术通过控制外加电压的大小以及产酸过程的pH,有利于水解酸化菌和产氢菌分别在阳极和阴极富集,强化阳极有机物分解产酸与阴极产氢,可定向提高污泥有机物降解与挥发性脂肪酸生产过程。经耦合一级微生物电解池进行厌氧发酵后,产生的挥发性脂肪酸与氢均通入产甲烷相,进行耦合二级微生物电解池的厌氧产甲烷过程。产甲烷过程所需的最优pH一般在中性左右,且阴极还原二氧化碳产甲烷过程所需的电位小于阴极还原产氢,因此,可调控外加电压和pH至合适大小,本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种提升高含固污泥厌氧消化性能方法,其特征在于,包括以下步骤:S1:将高含固污泥进行热水解预处理,以此对高含固污泥进行传质改善和有机物强化溶出;S2:将步骤S1预处理后得到的产物作为底物,进行产酸发酵,产酸过程耦合第一级微生物电解池,构成一级耦合增强模组;S3:将步骤S2发酵产酸后得到的液相与气相产物再次作为底物,进行厌氧消化产甲烷,产甲烷过程耦合第二级微生物电解池,构成二级耦合增强模组。2.根据权利要求1所述的一种提升高含固污泥厌氧消化性能方法,其特征在于,所述高含固污泥中总固体质量的含量为15~25wt%,所述高含固污泥中挥发性固体质量占总固体质量的比例为40~65%;S1、S2、S3中所采用的整个系统为序批式系统,或半连续式/连续式进出料系统。3.根据权利要求1所述的一种提升高含固污泥厌氧消化性能方法,其特征在于,S1中所述热水解的条件为:温度120~200℃,压力0.4~0.7MPa,时间15~45min,搅拌速度100~200rpm,其中温度升至设定温度后开始计时,到达设定时间后停止加热。4.根据权利要求1所述的一种提升高含固污泥厌氧消化性能方法,其特征在于,S2和S3中,均以厌氧消化后的稳定化污泥作为接种污泥;其中接种污泥的总固体质量占接种污泥总质量的比例为2~5%,挥发性固体质量占总固体质量的比例为30~50%,底物与接种污泥中挥发性固体的质量比为0.5~5。5.根据权利要求1所述的一种提升高含固污泥厌氧消化性能方法,其特征在于,S2和S3中,第一级微生物电解池和第二级微生物电...

【专利技术属性】
技术研发人员:李磊戴晓虎
申请(专利权)人:同济大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1