用能量场进行三维物体制造成型的方法和系统技术方案

技术编号:2890096 阅读:205 留言:0更新日期:2012-04-11 18:40
用能量场进行三维物体制造成型的方法和系统,利用三维CAD信息和由CAD信息抽取系统、计算机和相关软件、能量场发生器组成的虚模具系统,生成与目标零部件相一致的实体能量场,作用于能因外界激励发生质变性变化的成型介质,使得能量汇聚点处的介质与非汇聚点处的介质分离开来,固化成型,再经过后续工艺处理形成目标零部件。其成型速度快,工艺简单,加工精度高,适用范围广。(*该技术在2017年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及一种用能量场进行三维物体制造成型的方法和系统。传统机械制造技术可分为去除法加工,如车铣镗钻磨等,变形法加工,如锻压等,和以铸造、注塑为代表的添加法加工。其加工精度取决于刃具、模具与材料的相互作用,影响因素很多,灵活性较差。随着数控技术的发展,平面二维曲线加工已经可以很好实现。三维规则形体的加工也可以实现,但是因为用加工中心、三维雕刻机等设备加工三维形体在本质上仍是用二维去除法逐步由点成线、成面、成体,依赖于复杂的软硬件支持,所以用它们实现任意的三维制造困难很多。正在发展中的快速原型制造技术主要采用添加法加工,较好地解决了自由三维形体的成型问题。它首先建立三维CAD模型,然后进行分层处理,采用各种方法将三维形体一层层地制造出来。这些方法如美国专利5137662,用光敏液相法(SLA),通过紫外激光逐层选区固化光敏聚合物材料得到三维形体;美国专利5340433,用熔化沉积法(FDM),将熔化后能快速固化的材料通过可以三维移动的加热头逐层堆积成型。这些方法目前仍处在积点成线成面成体阶段,成形速度较慢,支持软件复杂。以色列CUBITAL公司的美国专利5263130和5287435采用固基光敏液相法(SGC)成形它首先在加工面上均匀施加光敏液体成型材料,用离子成像技术制造掩模,然后让能束通过掩模对光敏液曝光,固化,然后清除未固化的多余液体,接着在非成形处填充支持材料,并将当前层磨平,进入下一层的加工,如此重复,完成造型。正因为每层加工均需制造对应的掩模,再加上掩模的维护过程,使其成型过程多,工艺复杂,加工速度的提高并不显著。快速原型制造技术目前的制造精度约为0.1mm,垂直方向呈阶梯状,需进一步加工后才能转换为模具,尚不能实现实用模具和较高精度零件的直接制造。用它们实现三维自由形体的制造仍然依赖于相对复杂的软硬件支持。本专利技术的目的是提供一种用能量场发生器取代机械机构、减少误差环节,工艺简单,加工速度快的用能量场进行三维物体制造成型的方法和系统。用能量场进行三维物体制造成型方法的系统由三维CAD信息抽取系统、含相关软件的计算机、控制线路、能量场发生器、成形箱和成形材料组成。该系统的面型能量场发生器包括直射式和透射式。XY向为行列双向寻址面型能量场发生器,Z向可以采用与XY向相似的面型能量场发生器。为降低成本,考虑到Z向主要是提供定位成形面的功能,它可以采用仅有行寻址的面型能量场发生器、机械升降式、条状能量场发生器机械升降式、能束反射式等多种形式。直射式面型能量场发生器包括整体集成式和分层式。直射分层式面型能量场发生器由选通与保持电路单元,连接单元,面阵型能量源和输出单元组成,面阵型能量源与控制电路分别集成,分层连接。整体集成式面型能量场发生器则将选通与保持电路单元和能量源整体集成在一起,省去了连接单元。上述的选通与保持电路单元采用带存储单元的有源矩阵电路,包括在非晶硅基体材料上和多晶硅基体材料上生成的薄膜电路形式、场效应管电路和晶体管电路形式;连接单元包括微导线阵列结构和导电膜结构;输出单元11包括微管阵列形式和对能量场进行放大与缩小输出调制形式。所用微管阵列包括PbO玻璃管阵列、光纤管阵列和C60纳米管阵列。放大与缩小输出调制包括由一组透镜组成的光学投影系统和电磁透镜系统。透射式面型能量场发生器由面型光源、匀光板和面阵型光阀组成,其面型光阀包括液晶光阀,液晶光阀采用带存储单元的有源矩阵电路驱动。透射式面型能量场发生器也可以连接上述的输出单元。可以用多个能量场发生器以拼接组合的方式形成更大面积的能量场发生器,这样可以扩展系统的适用范围。该系统所述的成型材料包括液态光敏树脂材料、可烧结的粉末材料、薄片材料和逻辑性功能材料。由人工设计或直接由实物获取目标零部件的三维CAD信息,计算机用此信息控制能量场发生器生成与目标零部件相一致的实体能量场,这里的实体能量场是指能量的实际汇聚而非虚像,它包括机械力、电磁场、光、声、重力场、粒子束和温度场。该能量场作用于能因外界激励发生物态变化的成形介质,如光敏聚合物及下文所述的逻辑性功能材料等等,逻辑性功能材料是指具有常态、激活态、质变态三态的功能材料。常态下逻辑性功能材料性质均匀,能束在其中以线性传播并以一定规律衰减,使得控制能束强度就可以控制其有效作用距离。激活态下,材料在某些能束作用下处于临界性激活状态,能束撤除后又能返回常态。质变态是指已经处于激活态的材料在某种或多种能量场的作用下,能量汇聚点处的材料相对于非汇聚点处的材料能够发生质变性变化,并分离出来的状态。与当前加工信息一致的实体能量场作用于成形介质,使得能量汇聚点处的介质即场内介质,相对于非能量汇聚点处的介质即场外介质,发生质变性变化,从而利用这种质变性变化,将场内介质与场外介质分离开来,固化成型,再经过后续工艺处理形成目标零部件。该系统的三维CAD信息抽取系统、计算机和相关软件与能量场发生器合在一起组成了“虚拟模具系统”,简称“虚模具”,因为该系统具有通用性,由三维CAD数据信息驱动,用它可以产生与各种目标零部件相一致的能量场,而不用增加其他硬件,与铸造用模具功能相似。将三维CAD信息进行分层处理,用虚模具系统在XY向和Z向产生与当前成型层一致的面型能量场,作用于成形材料。当前层固化后,协调变化Z向与XY向能量场发生器,进入下一成型面的加工。如此重复,实现整体造型。直射式的特点是控制面型能量源点阵中各点能量源的通断,使其发出的能束照射到成型材料上。透射式则是控制面型光阀阵列,对光进行调制,然后作用于成型材料上。概括地说,能量场三维制造系统就是用虚模具系统产生能量场直接作用于成形介质进行分离成形的三维制造系统。本专利技术的优点为1.用能量场发生器取代机械机构,极大地减少误差环节;2.它将产品精度的决定因素由原来的机械传动、刃具、模具和材料等众多不易保持一致的因素,如硬度、应力变形等,转变为易于控制、易于保持一致的能量场的调控精度,系统的通用性及与外界的联络能力大为增加;3.该系统直接由面生长成体,成形速度快,其计算机处理复杂度比由点成线成面成体的方法大为下降,并且有利于实现连续生长成形。下面结合附图和实施例对本专利技术进行详细地阐述。附图说明图1为能量场三维制造系统原理框图;图2A为直射式能量场三维制造系统原理图,图2B为透射式能量场三维制造系统原理图;图3A为直射式能量场发生器结构图,图3B为直射式能量场发生器电路原理图,图3C为直射式能量场发生器的控制框图;图4为直射式能量场发生器中电源选通控制部分与能源面阵部分的连接结构原理图;图5为直射式能量场发生器多单元拼接与控制原理图;图6为能量场发生器用微管阵列进行能量输出的示意图;图7为能量场发生器进行放大或缩小输出的示意图;图8A,B,C,D为Z向能量场发生器的多种形式示意图;图9为Z向采用机械升降的透射式能量场三维制造系统结构图;图10为综合利用电磁场、重力场、温度场和超声波场的三维制造系统原理图。实施例1用直射集成式多单元面型能量场进行三维物体制造成型方法的系统。所述的直射集成式多单元面型能量场三维制造系统由三维CAD信息抽取系统、含相关软件的计算机1、控制线路2、直射集成式面型能量场发生器3、4,成形箱5和成形材料6组成。该实施例中,XY本文档来自技高网...

【技术保护点】
一种用能量场进行三维物体制造成型的方法,其特征在于通过控制电路(2),由CAD信息抽取系统、含相关软件的计算机(1)和Z向面型能量场发生器(3)、XY向面型能量场发生器(4)组成了虚模具系统,通过对三维CAD信息进行分层处理,在XY向和Z向生成与当前加工面一致的能量场,作用于能因外界激励发生物态变化的成形材料(6),当前层固化后,协调变化XY向和Z向虚模具系统生成新位置的能量场,进行下一层的加工,如此重复,实现整体造型。

【技术特征摘要】

【专利技术属性】
技术研发人员:张文武颜永年冯静王巍王允
申请(专利权)人:中国航天工业总公司第一研究院第十三研究所
类型:发明
国别省市:11[中国|北京]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利