【技术实现步骤摘要】
一种基于量子萤火虫算法的无人机姿控参数智能整定方法
本专利技术属于自动控制领域,具体涉及一种基于量子萤火虫算法的无人机姿控参数智能整定方法。
技术介绍
四旋翼无人机分数阶PID控制器虽然相比PID控制具有更好的控制性能,但控制器参数相比PID控制大幅增加,由于分数阶微分具有的非线性特征,导致分数阶控制器参数整定呈现多变量、非线性、多极值等问题,难以获得类似PID控制器参数的解析整定方法。因此,需要根据控制器性能指标将控制器参数整定问题转化为控制性能的优化问题来解决,然后采用具备多变量全局寻优能力的人工智能优化算法对该优化问题进行求解,从而实现控制器参数的整定。2009年,剑桥学者Xin-SheYang等根据自然界中萤火虫的发光行为,提出了萤火虫算法(FireFlyAlgorithm,FA)[X.-S.Yang,Fireflyalgorithmsformultimodaloptimization[J].StochasticAlgorithms:FoundationsandApplications,SAGA2009,Lectur ...
【技术保护点】
1.一种基于量子萤火虫算法的无人机姿控参数智能整定方法,其特征在于,包括以下步骤:/n步骤1、建立无人机姿态运动模型,设计分数阶PID控制器,确定待整定参数,选择误差指标函数为目标函数;/n步骤2、设置量子萤火虫算法参数;/n步骤3、执行量子萤火虫算法进行控制器参数整定优化,获得本次整定最优控制器参数和目标函数值;/n步骤4、判断目标函数值是否满足要求;若目标函数值满足需求,则萤火虫位置为最优姿态控制器参数,整定结束;否则,返回步骤2,重新设置量子萤火虫算法参数,执行步骤2-4。/n
【技术特征摘要】
1.一种基于量子萤火虫算法的无人机姿控参数智能整定方法,其特征在于,包括以下步骤:
步骤1、建立无人机姿态运动模型,设计分数阶PID控制器,确定待整定参数,选择误差指标函数为目标函数;
步骤2、设置量子萤火虫算法参数;
步骤3、执行量子萤火虫算法进行控制器参数整定优化,获得本次整定最优控制器参数和目标函数值;
步骤4、判断目标函数值是否满足要求;若目标函数值满足需求,则萤火虫位置为最优姿态控制器参数,整定结束;否则,返回步骤2,重新设置量子萤火虫算法参数,执行步骤2-4。
2.根据权利要求1所述的基于量子萤火虫算法的无人机姿控参数智能整定方法,其特征在于,所述步骤1具体为:
建立无人机的运动模型,设计分数阶PID姿态控制器其中e为俯仰角误差,为α阶分数阶微分算子,为β阶分数阶积分算子Kp、Ki、Kd为比例控制增益、积分控制增益和微分控制增益;确定待整定参数X=[KpKiKdαβ]T,选择时间乘以误差绝对值积分指标作为控制器参数整定的目标函数将控制器参数整定问题转化为控制器参数的优化问题,该问题表述如下:
X=[KpKiKdαβ](I)由于萤火虫算法是求目标函数最大值,而无人机飞控希望误差指标最小,则萤火虫算法的自身亮度计算公式为I0(X)=-f(X),其中f(X)=Y为控制器参数整定目标函数值,反映了控制器参数的姿态控制效果。
3.根据权利要求1所述的基于量子萤火虫算法的无人机姿控参数智能整定方法,其特征在于,所述步骤2设置量子萤火虫算法参数包括:设计变量的寻优范围为[Downk,Upk],k=1,2,…5,[Downk,Upk]为第k个设计变量的寻优范围,Upk为范围上界、Downk为范围下界;亮度吸收系数为γ;β0为最大吸引力;最大迭代次数为lmax,lmax>0;精英保留策略的萤火虫个数为Numelite,Numelite>1;变异概率为Pmut,0<Prmut<1;令萤火虫之间的距离计算公式为di,j=||Xi-Xj||;当前迭代次数l=1。
4.根据权利要求1所述的基于量子萤火虫算法的无人机姿控参数智能整定方法,其特征在于,所述步骤3具体包括以下步骤:
步骤3.1、量子萤火虫初始化,采用量子位的概率幅作为萤火虫当前位置编码,
式中,θij=2π×radmn;radmn为(0,1)之间的随机数;m是种群规模;n是优化变量空间维数;i=1,2,…,m;j=1,2,…,n;每个萤火虫位置占据遍历空间中的两个位置,分别对应量子态|0>和|1>的概率幅,即
XQic=(cos(θi1),cos(θi2),…,cos(θin)),XQis=(sin(θi1),sin(θi2),…,sin(θin))(3)
式中,XQic为余弦位置,XQis为正弦位置;
步骤3.2、量子搜索
萤火虫量子...
【专利技术属性】
技术研发人员:王佩,魏宏夔,施国强,吕梅柏,李旭,邢超,张岳,
申请(专利权)人:西北工业大学,北京电子工程总体研究所,
类型:发明
国别省市:陕西;61
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。