一种碳纤维复合材料结构层的缠绕成型方法技术

技术编号:27634990 阅读:78 留言:0更新日期:2021-03-12 13:54
本发明专利技术公开了一种碳纤维复合材料结构层的缠绕成型方法,所述缠绕成型方法包括如下步骤:步骤S1、根据浸胶与胶液含量及缠绕张力对制品的影响确定张力制度,利用张力制度缠绕使各层碳纤维的初应力相等,使内模和碳纤维复合材料的变形相协调;步骤S2、针对制品的结构特点,选择基体树脂和固化制度进行固化;步骤S3、确定碳纤维复合材料结构层的纤维铺层顺序和缠绕线型,并根据纤维铺层顺序和缠绕线型、张力制度和固化制度编制纤维缠绕控制程序;步骤S4、根据缠绕控制程序对制品进行纤维缠绕成型。本发明专利技术在复合材料结构层的制造过程中,主要运用纤维缠绕技术,通过二次缠绕装配,实现复合材料的一体化缠绕成型,提高制品的纤维性能发挥效率。

【技术实现步骤摘要】
一种碳纤维复合材料结构层的缠绕成型方法
本专利技术属于飞机结构的设计领域,涉及一种碳纤维复合材料结构层的缠绕成型方法。
技术介绍
吊挂盒段下连杆是吊挂盒段的重要传力零件,用于连接吊挂盒段底部和机翼下翼面,传递发动机推力。飞机吊挂盒段下连杆通常为金属材料,波音787飞机首次采用复合材料筒和钛合金组成复合材料连杆用于连接吊挂和机翼下翼面,与之前纯金属连杆相比,减重明显。下连杆的结构主要承受拉压载荷,其纤维方向应尽量采用轴向或近轴向铺层。但按照缠绕经验分析,铺层结构的纤维发挥效率一般低于缠绕结构,这主要是由于在纤维缠绕过程中由于纤维张力的施加,可以保证纤维的走向更加平直,充分发挥了纤维复合材料的强度。在复合材料连杆的制造过程中,实现复合材料连杆的一体化缠绕成型,现有缠绕成型方法缠绕出的下连杆纤维性能发挥效率低。
技术实现思路
针对目前缠绕成型方法缠绕出的下连杆的纤维性能发挥效率低的问题,本专利技术提供了一种碳纤维复合材料结构层的缠绕成型方法。本专利技术的目的是通过以下技术方案实现的:一种碳纤维复合材料结构层的缠绕成型方法,包括如下步骤:步骤S1、根据浸胶与胶液含量及缠绕张力对制品的影响确定张力制度,利用张力制度缠绕使各层碳纤维的初应力相等,使内模和碳纤维复合材料的变形相协调;步骤S2、针对制品的结构特点,选择基体树脂和固化制度进行固化;步骤S3、确定碳纤维复合材料结构层的纤维铺层顺序和缠绕线型,并根据纤维铺层顺序和缠绕线型、张力制度和固化制度编制纤维缠绕控制程序;步骤S4、根据缠绕控制程序对制品进行纤维缠绕成型。相比于现有技术,本专利技术具有如下优点:本专利技术在复合材料结构层的制造过程中,主要运用纤维缠绕技术,通过二次缠绕装配,实现复合材料的一体化缠绕成型,提高制品的纤维性能发挥效率。附图说明图1为连杆制备流程示意图。具体实施方式下面结合附图对本专利技术的技术方案作进一步的说明,但并不局限于此,凡是对本专利技术技术方案进行修改或者等同替换,而不脱离本专利技术技术方案的精神和范围,均应涵盖在本专利技术的保护范围中。具体实施方式一:本实施方式提供了一种碳纤维复合材料结构层的缠绕成型方法,所述方法包括如下步骤:S1、根据浸胶与胶液含量及缠绕张力对制品的影响确定张力制度,利用张力制度缠绕使各层碳纤维的初应力相等,使内模和碳纤维复合材料的变形相协调。胶液含量的高低、变化及分布对纤维缠绕制品性能影响很大:一是直接影响对制品质量和厚度的控制;二是从强度角度看,含胶量过高,会使制品复合强度降低。含胶量过低,制品空隙率增加,使制品气密性、耐老化性能及剪切强度下降。同时也影响纤维强度的发挥。此外,胶液含量过大的变化会引起不均匀的应力分布,并在某些区域引起破坏。因此,纤维浸胶过程必须严格控制。在纤维缠绕过程中,纤维所受的张紧力称缠绕张力,是缠绕工艺的重要参数。张力大小、各束纤维间张力的均匀性以及各缠绕层之间缠绕张力的均匀性,对制品质量影响极大。(1)张力对制品机械性能的影响纤维缠绕制品的强度和疲劳性能与缠绕张力有密切的关系。张力过小,制品强度偏低。由于张力小,连杆在承载时变形就大,而连杆的变形越大,其耐疲劳性能就越差;张力过大,由于纤维磨损而使其强度损失增大,制品强度下降。缠绕张力能使树脂基体产生预应力,从而可提高基体抵抗开裂的能力。纤维缠绕结构承压时,由于应变集中,开裂首先都在垂直纤维方向的树脂基体开始。因为垂直纤维方向的允许变形比纤维方向约低10倍。缠绕张力可使纤维间的树脂产生预应力,从而提高了垂直纤维方向树脂基体的拉伸强度,亦即提高了垂直纤维方向的允许变形。纤维之间张力的均匀性,对制品性能影响很大。各纤维束所受张力的不均匀性越大,制品强度越低。因此,缠绕制品时应尽量保持束间、束内纤维张力均匀。为此,应采用低捻度、张力均匀的纤维,并尽量保持纱片内各束纤维是平行的。(2)张力对制品密实程度的影响缠绕在曲面上的纤维,其缠绕张力将产生垂直于芯模表面的法向力,使制品致密的成型压力与缠绕张力成正比。众所周知,纤维缠绕制品的孔隙率是影响其性能的重要因素,而孔隙率是随缠绕张力而变化的。张力增大,孔隙率降低,这也是增大缠绕张力能够提高制品强度的一个重要原因。(3)张力对含胶量的影响缠绕张力对纤维浸渍质量、制品含胶量及均匀性影响非常大。随着缠绕张力增大,含胶量降低。在湿法缠绕中,由于缠绕张力的径向分量—法向压力的作用,胶液将由内层被挤向外层,因而将出现胶液含量沿壁厚不均匀—内低外高现象。采用分层固化或预浸材料可减轻或避免这种现象。(4)张力制度的制定纤维是连续地一圈一圈缠绕到芯模上去的。在缠绕张力作用下,后缠上去的纤维层都对先缠上去的纤维层产生径向压力,迫使其径向发生压缩变形,从而使内层纤维变松。如果采用恒定的缠绕张力,将会使制品纤维层呈现内松外紧状态,从而使内外层纤维的初应力产生很大的差异,导致纤维不能同时承载,从而大大降低制品强度和疲劳性能。采用逐层递减的张力制度,虽然后缠上去的纤维层对先缠上去的纤维层仍有削减初张力的作用,但可控制后一层和前一层削减后的张力相同。于是,便可使从内到外的全部缠绕层具有相同的初张力,使制品强度和疲劳性能得到提高。碳纤维复合材料连杆逐层递减的张力制度在使用时较麻烦,因此通常采用2~3层递减一次,递减幅度等于逐层递减几层的总和。通过张力制度的确定,使内模与复合材料结构层的碳纤维张力协调化,使碳纤维的使用得以优化,使碳纤维整体的工作条件和局部单层的工作条件得以和连杆整体承载的性能联系起来。S2、针对制品的结构特点,选择基体树脂和固化制度进行固化,固化制度包括加热的温度范围、升温速度、温度梯度、保温时间和降温冷却。(1)加热固化高分子物质随着聚合(固化)过程的进行,分子量增大,分子运动困难,位阻效应增大,活化能较高,因此需要加热到一定温度才能反应。由于加热可使固化反应较为彻底,因此,加热固化比常温固化的制品强度至少可提高20~25%。此外,加热固化可缩短固化时间。一般温升10℃,可提高化学反应速度2倍。(2)升温速度升温阶段要平稳,升温速度不应太快。否则,由于化学反应激烈,溶剂等低分子物质易急剧逸出而形成大量气泡,特别是在低沸点组分的沸点以下时(如丙酮),为了赶出气泡,升温应慢些。过了丙酮沸点后,升温可适当快些。纤维缠绕玻璃钢制品的导热系数仅为金属的1/150,升温速度快,必然使结构各部分温差很大。特别是为使制品内部达到反应温度而又不使外表层温度过高甚至固化(不仅内部挥发物跑不出来,而且易产生很大内应力),升温速度应严格控制。通常采用的升温速度为0.5~1℃/min。(3)温度梯度与保温时间指固化温度在某一温度值保温一定时间。通常在初期,有一个低温恒温阶段,利于小分子排除和初步交联反应;在最高固化温度下,要保证足够的恒温时间,以保证树脂固化反应完全。最高固化温度值取决于树脂系统,本文档来自技高网...

【技术保护点】
1.一种碳纤维复合材料结构层的缠绕成型方法,其特征在于所述缠绕成型方法包括如下步骤:/n步骤S1、根据浸胶与胶液含量及缠绕张力对制品的影响确定张力制度,利用张力制度缠绕使各层碳纤维的初应力相等,使内模和碳纤维复合材料的变形相协调;/n步骤S2、针对制品的结构特点,选择基体树脂和固化制度进行固化;/n步骤S3、确定碳纤维复合材料结构层的纤维铺层顺序和缠绕线型,并根据纤维铺层顺序和缠绕线型、张力制度和固化制度编制纤维缠绕控制程序;/n步骤S4、根据缠绕控制程序对制品进行纤维缠绕成型。/n

【技术特征摘要】
1.一种碳纤维复合材料结构层的缠绕成型方法,其特征在于所述缠绕成型方法包括如下步骤:
步骤S1、根据浸胶与胶液含量及缠绕张力对制品的影响确定张力制度,利用张力制度缠绕使各层碳纤维的初应力相等,使内模和碳纤维复合材料的变形相协调;
步骤S2、针对制品的结构特点,选择基体树脂和固化制度进行固化;
步骤S3、确定碳纤维复合材料结构层的纤维铺层顺序和缠绕线型,并根据纤维铺层顺序和缠绕线型、张力制度和固化制度编制纤维缠绕控制程序;
步骤S4、根据缠绕控制程序对制品进行纤维缠绕成型。


2.根据权利要求1所述的碳纤维...

【专利技术属性】
技术研发人员:徐忠海邹肖灿王荣国赫晓东
申请(专利权)人:深圳烯创先进材料研究院有限公司
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1