当前位置: 首页 > 专利查询>李志扬专利>正文

阵列波导干涉器制造技术

技术编号:2689810 阅读:237 留言:0更新日期:2012-04-11 18:40
本实用新型专利技术涉及一种阵列波导干涉器,属于波导技术领域,应用广泛,特别适用于做光通讯网络、光谱测量、传感、激光器件、集成光电器件的核心装置或关键部件。它包括输入光波导,输出光波导,在两者之间有起耦合作用的阵列光波导,上述光波导为直线形或/和曲线形光波导,并制作在有形载体上。本实用新型专利技术的优点在于可实现非常高的波长分辨率或非常窄的信道,具有模块化结构,添加一个信道只需增加一个模块,对同一块器件,插入损耗并不随信道数目的增加而增加。可以采用大规模集成电路技术中的光掩模技术批量制造,重复性好。(*该技术在2011年保护过期,可自由使用*)

【技术实现步骤摘要】

本技术涉及一种阵列波导干涉器,属于波导
,特别适用于做光通讯网络、光信息传输与处理系统、光谱测量、传感、激光器件、集成光电器件的核心装置或关键部件。传统干涉器包括Fabry-Perot干涉器、Mach-Zehnder干涉器、Michelson干涉器等,它们被广泛应用于光谱分析、激光器件、精密测量、光弹分析等各种领域,许多光纤传感器,如应力、应变、温度、磁场光纤传感器等,也是把起传感作用的一段增敏光纤作为上述干涉器的一部分来实现传感测量。近年来光通讯网络迅速发展,需要各种无源和有源光器件,如波长解复用/波长复用器(WDMUX/WMUX,Wavelength demultipler/wavelengthmultiplexer)、波长选择开关(WSS,Wavelength-selective switches)、波长选择路由(WSS,Wavelength-selective routing)、波长选择耦合器(WSC,Wavelength-selective coupler)、波长分插复用器(WADM,Wavelengthadd/drop multiplexer)、光隔离器(Isolator)、窄波长高稳定激光器等,而且对许多参数,如信道间隔、信道数目、插入损耗、回波损耗、信道隔离度、器件尺寸及与光纤的兼容性等提出了非常高的要求,采用上述干涉器已难以充分满足这些需要。例如用Fabry-Perot干涉器制作的光波解复用器,由于是多光束干涉,可以达到非常高的波长分辨率,但一个解复用器只对应一个信道,集成度不高,且插入损耗大。而Mach-Zehnder干涉器和Michelson干涉器采用双光束干涉,波长分辨率低。根据Mach-Zehnder干涉器制作的复用解复用器要求信道间隔在10nm以上,主要用于双波长或间隔较大的多波长应用领域。另外多层干涉滤波器(Multilayer interference filters)如果要达到光通讯所要求的窄带滤波效果,结构复杂,制造成本高,而且尺寸大,集成度低,因而信道数目受到很大限制。传统干涉器的上述局限限制了它们在光通讯方面的广泛应用,因此在光通讯网络领域发展出了许多新的器件,如阵列波导光栅(AWG,Arrayed waveguide grating)、光纤布喇格光栅(FBG,Fiber Bragg grating)等。其中阵列波导光栅,是利用波导阵列产生的光程差,使不同波长的光波在空间衍射分开,再耦合到不同光纤通道之中。用阵列波导光栅可实现很高的光通道数目,但它不具备模块化结构。光纤布喇格光栅是沿光纤轴向对其折射率进行周期性调制,产生布喇格反射,它是一种窄带陷波滤波器或窄带反射器,它具备模块化结构,增加一个通道只需多添加一个光纤布喇格光栅,但对折射率进行调制在制造时需要特殊的工艺。本技术的目的是克服上述现有技术的不足之处,提供一种可以用于制作各种光网络器件、传感器件、光谱测量仪、激光器件、集成光电器件的阵列波导干涉器,该阵列波导干涉器波长分辨率高,兼容性好,结构简单,具有模块化结构,可以采用大规模集成电路技术中的光掩模技术批量制造,解决用光波导构成窄带干涉器的问题。为达到上述目的,本技术的技术方案是阵列波导干涉器包括输入光波导1,输出光波导2,在两者之间有起耦合作用的阵列光波导3,所述阵列光波导3由不少于两根光波导4组成;输入光波导1、输出光波导2和阵列光波导3的光波导4为直线形或/和曲线形光波导,并制作在有形载体5上,所述载体5是平面基片或立体构件。本技术的基本原理是输入光波导1中的光波场由阵列光波导3耦合到输出光波导2,由于阵列光波导3含有多条光波导4,而每个光波导4引入一定的光程差,这样所有光波在输出光波导2中干涉叠加,结果只有满足一定条件的光波长才能发生相长干涉,从输出光波导2输出。根据这种结构特点,因此将这种干涉器称之为阵列波导干涉器(AWI,Arrayedwaveguide interferometer)。与AWG不同的是,本技术利用了多光束的干涉,而不是多光束的衍射。由于采用多光束干涉,阵列波导干涉器可以实现非常高的波长分辨率。阵列波导干涉器的波长分辨率一般可达到输出中心波长的n分之一,其中n为阵列光波导3中所含光波导4的数目。因此当输出中心波长为1500nm时,如果要达到0.15nm的波长分辨率,一般阵列光波导3中所含光波导4的数目要达到10000根。以下结合附图和实施例对本技术作进一步详细说明附图说明图1为输入光波导1和输出光波导2及阵列光波导3中的光波导4全部为直线形光波导,且载体5为平面基片时,阵列波导干涉器的实施例示意图。图2是阵列光波导3的光波导4为曲线形光波导,输入光波导1和输出光波导2为直线形光波导,且载体5为平面基片时的实施例示意图。图3是阵列光波导3的光波导4,输入光波导1和输出光波导2部分为直线形光波导,部分为曲线形光波导,且载体5为平面基片时的实施例示意图。图4是阵列光波导3的光波导4,输入光波导1和输出光波导2全部为曲线形光波导,且载体5为平面基片时的实施例示意图。图1中阵列波导干涉器包括输入光波导1,输出光波导2,在两者之间有阵列光波导3,阵列光波导3由不少于两根光波导4组成。阵列光波导3用于把输入光波导1中的光波场耦合到输出光波导2进行干涉叠加。图中Iin和Iout分别代表输入和输出光场。为实现相长干涉,应使得光波从输入光波导1的输入端口输入,分别经过阵列光波导3中相邻两根光波导4到达输出光波导2的输出端口时的光程差为输出光波波长的整数倍。但为了改善阵列波导干涉器的整体性能,如提高对次极大谱峰的抑制,经过阵列光波导3中部分相邻两根光波导4所产生的上述光程差可以在一定程度上偏离输出波长的整数倍。同时阵列波导干涉器是一个具有方向性的器件,当光波分别从输入光波导1的左输入端口和右输入端口输入,经过光波导阵列3中相邻两根光波导4,到达输出光波导2的输出端口时的光程差一般是不同的,这意味着如果某一波长为λ的光波从输入光波导1的左输入端口输入,可以耦合输出到输出光波导2,则同一波长的光波从输入光波导1的右输入端口输入时不能耦合输出到输出光波导2。如果用光波场从输入光波导1的输入端口输入,经过阵列光波导3,到达输出光波导2的输出端口的过程中光波矢转过的角度作为输入光波导1和输出光波导2之间的夹角,则在图1中,当光波从输入光波导1的左输入端口输入时,输入光波导1和输出光波导2之间的夹角为锐角。而当光波从输入光波导1的右输入端口输入时,输入光波导1和输出光波导2之间的夹角为钝角。因此当全部采用直线形光波导时,输入光波导1和输出光波导2之间的夹角在0~180度之间。图2中由于阵列光波导3的光波导4为曲线形光波导,输入光波导1和输出光波导2之间的夹角可在0~360度之间。一般夹角增大有利于增大光波分别经过光波导阵列3中相邻两根光波导时的光程差,有利于减小器件尺寸。图3和图4中分别采用了曲线形光波导。采用直线形光波导时设计简单,而用曲线光波导代替直线光波导时,一方面有利于调整相邻光波导间的光程差,一方面有利于调整光波导阵列3中的光波导4分别与输入光波导1和输出光波导2之间的耦合强度。阵列波导干涉器相当于本文档来自技高网...

【技术保护点】
一种阵列波导干涉器,其特征在于,它包括输入光波导(1),输出光波导(2),在两者之间有起耦合作用的阵列光波导(3),所述阵列光波导(3)由不少于两根光波导(4)组成;输入光波导(1)、输出光波导(2)和阵列光波导(3)的光波导(4),为直线形或/和曲线形光波导,并制作在有形载体(5)上,所述载体(5)是平面基片或立体构件。

【技术特征摘要】

【专利技术属性】
技术研发人员:李志扬
申请(专利权)人:李志扬
类型:实用新型
国别省市:42[中国|湖北]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1