共焦点显微镜及采用它的荧光测量方法和偏振光测量方法技术

技术编号:2673537 阅读:207 留言:0更新日期:2012-04-11 18:40
本发明专利技术的共焦点显微镜以及利用它的荧光测量方法和偏振光测量方法,它具有:入射光学系统(10、10′),使偏振光从照明光源(11)经过把微透镜阵列(21)配置在上部的矩阵式液晶器件(22)和物物(23)而入射到被观察物2内;检测光学系统(30、30′),检测从被观察物来的反射光或荧光;以及液晶控制部(52),控制液晶器件(22),其特征在于:使每个透射了微透镜阵列(21)的微透镜的光透射液晶器件(22)的各像素(22a),利用物镜(23)使多个焦点(24)形成在被观察物(2)上,并且,利用液晶控制部(52)来对透射液晶器件(22)的各像素的光的偏振光方向进行控制,使透射各像素的光的偏振光方向互相垂直。(*该技术在2023年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及对生物体组织或生物体组织发出的荧光进行观察等时所使用得共焦点显微镜,并涉及高灵敏度、横方向、深度方向的分辩率好、能够进行大范围的动态观察的、采用液晶的共焦点显微镜,以及基于采用液晶的共焦点显微镜的微阵列基片的荧光测量方法和基于采用液晶的共焦点显微镜的偏振光测量方法。
技术介绍
过去,在生命科学的研究领域中,在对生物体组织或添加了荧光试剂的生物体组织试样的荧光发光的观察中,使用了共焦点显微镜。共焦点显微镜在深度方向上具有高分辩率,所以,主要用于生物体试样的三维观察等中。在图19中表示共焦点显微镜的现有例1(参照例如非专利文献1)。激光161由光束分离器162反射,由物镜163在试样164上成像。然后,由试样164反射的反射光、或者荧光166透射光束分离器162,通过反射镜167和透镜169而进入检测器171内。在此,由于在检测器171的前面放置针孔170,所以能够除去从焦点面以外发生的光束,获得明确的图像。为了观察整个试样164,使放有试样164的载物台在平面内移动,即进行扫描172,以进行观察。在共焦点显微镜中不进行试样移动而高速扫描的方法是1884年由Paul Nipkow专利技术的尼普科夫扫描圆盘方式。图20表示现有例2的采用尼普科夫扫描圆盘的多重共焦点显微镜的扫描方式原理(参见例如下列专利文献1、非专利文献2)。在多重共焦点显微镜180中激光181入射到共焦点用扫描装置190内。共焦点用扫描装置190的构成部分有由2块圆盘构成的聚光盘191和针孔盘192、圆筒194和光束分离器182。聚光盘191和针孔盘192由圆筒194来进行保持,利用马达195进行旋转。在此,激光181通过设置在聚光盘上的多个针孔193。该通过的光再经过光束分离器182,通过透镜183在被观察物184上形成多个焦点。然后,来自被观察物184的反射光通过光束分离器182使光路相对入射方向弯曲90°,利用透镜185在相机186上成像。这样来提高光的利用效率,实现多个焦点同时检测的多重共焦点显微镜。图21表示现有例3的多重共焦点显微镜的结构(例如参见下述专利文献2)。多重共焦点显微镜200具有和图18的现有例1相同的光学系统。但不同点是在入射光的光路上设有液晶单元203。入射光201通过光束分离器202,经过液晶单元203之后,被物镜204聚光于试样205上。来自试样205的反射光,经过光束分离器202,通过透镜207,反射光208在相机209中成像。在此,入射光201通过作为液晶单元的1个像素的开口部203a,在试样205的210a点上成像。然后,若对作为液晶单元的另一像素的203b进行开口,则入射光在试样205的210b的点上成像。这样,试样205的扫描,是通过依次对位于液晶单元平面上的像素,进行使入射光201通断的所谓X-Y扫描来进行的。在下述专利文献3和4中公开了一种DNA检查装置,具有把入射光源制成多光束的多点阵列,对由所照射的激励光产生的荧光进行共焦点检测。专利文献特开平5-60980号公报;特开平5-210051号公报;特开2001-108684号公报;特开2001-208688号公报;非专利文献Mark Schena著,加藤郁之进监译“DNA微阵列基片”,九善株式会社,2000年,P.19~45;川村信一郎及其他3人,“共焦点显微镜激光显微镜扫描器和CCD相机”横河技报,2001年,Vol.45,No.2,P.112-114。但是,现有例1的试样扫描型的共焦点显微镜,由于进行单焦点下的检测,所以观察宽大的区域时必须进行扫描,很难进行荧光等实时观察。现有例2的多重共焦点显微镜,因为同时检测多个点,所以,入射到邻接的焦点内的光之间产生干涉。将其称为交调失真(cross talk)。由于该干涉而产生的入射光强度分布,形成明暗花纹的干涉条纹。由于上述原因,照明光强度分布变得不均匀,存在有观察图像的横分辩率降低的问题。并且,存在有各焦点的光强度不一致的问题。再者,作为共焦点显微镜的应用,在检测器上不能一次观察到来自DNA芯片的误差大的荧光信号。在现有例3的多重共焦点显微镜中,通过依次对液晶单元的多个点进行开关来进行扫描,因此像现有例2的扫描那样,不需要机械扫描机构。但是,为了使液晶单元的各像素通断,必须进行像素数量的X-Y扫描,所以扫描一个画面所需要的时间长,很难实时地检测出整个试样的荧光等。并且,在上述专利文献3的DNA检查装置中,从多点阵列中入射的光之间产生干涉,并发生交调失真,和现有例2的共焦点显微镜一样,由于照明光强度分布不均匀,所以观察图像的横分辩率降低。再者,在上述专利文献4的DNA检测装置中,利用偏振光元件来形成多点阵列。和现有例1的共焦点显微镜一样,对试样载物台进行平面内的扫描,以此进行观察。与现有例1的多重共焦点显微镜的单焦点的情况相比较,虽然扫描所需的时间缩短,但为了观察宽阔的区域,必须进行扫描,很难实时地观察荧光等。
技术实现思路
本专利技术的目的在于,针对上述问题,提出一种灵敏度高、横方向、深度方向分辨率高,能够对宽阔区域进行动态观察的、采用液晶的共焦点显微镜,以及基于采用了液晶的共焦点显微镜的微阵列基片的荧光测量方法以及基于采用液晶的共焦点显微镜的偏振光测量方法。为了解决上述问题,本专利技术的采用液晶的共焦点显微镜,具有入射光学系统,从照明光源将偏振光通过矩阵式液晶器件和物镜入射到被观察物,在所述矩阵式液晶器件的上部配置有光束分离器、微透镜阵列;检测光学系统,包含摄像器件,该摄像器件通过光束分离器和透镜来检测来自被观察物的反射光或荧光;以及控制系统,包含对矩阵式液晶器件的各像素进行控制的液晶控制部,其特征在于,使每个透射了微透镜阵列的微透镜的光,透射矩阵式液晶器件的各像素,利用物镜在被观察物上结成多个焦点,并且,利用液晶控制部对透射矩阵式液晶器件的各像素的光的偏振光方向进行控制,液晶控制部控制成使透射矩阵式液晶器件的各像素的光的偏振光方向互相垂直。根据该结构,最好在矩阵式液晶器件的下部配置偏光镜,利用矩阵式液晶的各像素控制透射了该偏光镜的光的偏振光根据该结构,照射到被观察物上的光,利用微透镜阵列来把矩阵式液晶器件的各像素作为针孔进行入射,在被观察物上形成第1多个焦点。再者,被观察物的反射光或荧光在检测光学系统中,形成第2多个焦点,所以,本专利技术的显微镜作为共焦点显微镜使用。这时,在矩阵式液晶器件的各像素中,对矩阵式液晶器件的各像素进行控制,使透射各像素的光的偏振光方向互相垂直。这样,不进行被观察物的扫描控制,即可高速地进行被观察物的反射光或荧光的观察。并且,能够防止多重共焦点间的交调失真,提高分辨率。并且,本专利技术的采用液晶的共焦点显微镜,具有入射光学系统,把来自照明光源的偏振光通过第1矩阵式液晶器件入射到被观察物,在所述第1矩阵式液晶器件的上部配置有光束分离器、透镜、第1微透镜阵列;检测光学系统,包含摄像器件,该摄像器件通过第2矩阵式液晶器件、聚光透镜检测来自被观察物的反射光或荧光,在所述第2矩阵式液晶器件的上部配置有光束分离器、透镜、第2微透镜阵列;以及控制系统,包括对透射第1和第2矩阵式液晶器件的各像素的光的偏振光方向进行控制的第1和第2液晶控制部,其特征在于,使每个透射了第1微透镜阵本文档来自技高网
...

【技术保护点】
一种采用液晶的共焦点显微镜,具有:入射光学系统,从照明光源将偏振光通过矩阵式液晶器件和物镜入射到被观察物,在所述矩阵式液晶器件的上部配置有光束分离器、微透镜阵列;检测光学系统,包含摄像器件,该摄像器件通过上述光束分离器和透镜 来检测来自被观察物的反射光或荧光;以及控制系统,包含对上述矩阵式液晶器件的各像素进行控制的液晶控制部,其特征在于,使每个透射了上述微透镜阵列的微透镜的光,透射上述矩阵式液晶器件的各像素,利用上述物镜在上述被观察物上结 成多个焦点,并且,利用上述液晶控制部对透射上述矩阵式液晶器件的各像素的光的偏振光方向进行控制,上述液晶控制部控制成使透射矩阵式液晶器件的各像素的光的偏振光方向互相垂直。

【技术特征摘要】
...

【专利技术属性】
技术研发人员:林照刚前川克广柴田隆行
申请(专利权)人:独立行政法人科学技术振兴机构
类型:发明
国别省市:JP[日本]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利