一种语义识别方法、装置、计算机设备和存储介质制造方法及图纸

技术编号:26650659 阅读:32 留言:0更新日期:2020-12-09 00:49
本申请公开了一种语义识别方法、装置、计算机设备和存储介质,可基于人工智能技术实现语义识别,通过语义识别模型可提取第一用户输入信息样本的文本特征信息,从而识别该样本的预测语义信息,基于该样本的标签和预测语义信息调整语义识别模型的参数;通过调整后的语义识别模型提取第二用户输入信息样本的文本特征信息,从而识别该样本的预测语义信息;基于该样本的标签和预测语义信息再调整语义识别模型的参数,得到训练完成的语义识别模型;基于该语义识别模型对目标用户输入信息进行语义识别得到语义信息,其中,第一用户输入信息样本无需人工标注,可降低对人工标注的依赖,而采用第二用户输入信息样本对模型进行训练,可提升语义识别准确性。

【技术实现步骤摘要】
一种语义识别方法、装置、计算机设备和存储介质
本申请涉及自然语言处理
,具体涉及一种语义识别方法、装置和存储介质。
技术介绍
智能对话系统可以对用户输入信息进行语义识别,确定用户的对话意图,一般的,为了达到良好的识别效果,对话系统使用的模型需要大量的精标注数据,对于不同的应用场景而言,精标注数据可能需要不同的专业人士进行标注,会耗费大量的时间,例如,对于应用于医疗场景的对话系统,为了进行准确的语义识别,需要专业的医生将样本中用户的口语化描述,翻译为专业的医疗词作为样本的语义信息,然后基于样本训练出语义识别模型,将模型部署在对话系统中,这种对大量人工精标注样本的需求,不利于对话系统的实现和扩展。
技术实现思路
本专利技术实施例提供一种语义识别方法、装置和存储介质,可以一定程度降低语义识别模型对人工标注的依赖。本专利技术实施例提供一种语义识别方法,该方法包括:通过语义识别模型对第一用户输入信息样本提取文本特征信息,基于所述第一用户输入信息样本的文本特征信息,识别所述第一用户输入信息样本的预测语义信息,其中,本文档来自技高网...

【技术保护点】
1.一种语义识别方法,其特征在于,包括:/n通过语义识别模型对第一用户输入信息样本提取文本特征信息,基于所述第一用户输入信息样本的文本特征信息,识别所述第一用户输入信息样本的预测语义信息,其中,所述第一用户输入信息样本的标签包括对第一用户输入信息样本进行语义识别得到的语义信息,和/或从所述第一用户输入信息样本的回复信息中获取的信息;/n基于所述第一用户输入信息样本的标签和预测语义信息,对所述语义识别模型进行参数调整;/n通过调整后的所述语义识别模型对第二用户输入信息样本提取文本特征信息,基于所述第二用户输入信息样本的文本特征信息,识别所述第二用户输入信息样本的预测语义信息,其中,所述第二用户输...

【技术特征摘要】
1.一种语义识别方法,其特征在于,包括:
通过语义识别模型对第一用户输入信息样本提取文本特征信息,基于所述第一用户输入信息样本的文本特征信息,识别所述第一用户输入信息样本的预测语义信息,其中,所述第一用户输入信息样本的标签包括对第一用户输入信息样本进行语义识别得到的语义信息,和/或从所述第一用户输入信息样本的回复信息中获取的信息;
基于所述第一用户输入信息样本的标签和预测语义信息,对所述语义识别模型进行参数调整;
通过调整后的所述语义识别模型对第二用户输入信息样本提取文本特征信息,基于所述第二用户输入信息样本的文本特征信息,识别所述第二用户输入信息样本的预测语义信息,其中,所述第二用户输入信息样本的标签包括所述第二用户输入信息样本的语义信息;
基于所述第二用户输入信息样本的标签和预测语义信息,对所述语义识别模型进行参数调整,得到训练完成的语义识别模型;
基于训练完成的语义识别模型对目标用户输入信息进行语义识别,得到所述目标用户输入信息的语义信息。


2.根据权利要求1所述的语义识别方法,其特征在于,所述基于训练完成的语义识别模型对目标用户输入信息进行语义识别,得到所述目标用户输入信息的语义信息,包括:
通过训练完成的语义识别模型对目标用户输入信息进行文本特征提取,得到所述目标用户输入信息的文本特征信息;
通过所述语义识别模型,基于所述目标用户输入信息的文本特征信息,识别所述目标用户输入信息的语义信息。


3.根据权利要求2所述的语义识别方法,其特征在于,所述通过训练完成的语义识别模型对目标用户输入信息进行文本特征提取,得到所述目标用户输入信息的文本特征信息,包括:
通过训练完成的语义识别模型将目标用户输入信息映射到特征空间中,得到所述目标用户输入信息在所述特征空间的文本特征信息;
所述通过所述语义识别模型,基于所述目标用户输入信息的文本特征信息,识别所述目标用户输入信息的语义信息,包括:
通过所述语义识别模型,比较所述目标用户输入信息的文本特征信息,与预设的至少一种语义信息在所述特征空间的文本特征信息之间的特征距离;
基于所述特征距离,识别所述目标用户输入信息的语义信息。


4.根据权利要求1所述的语义识别方法,其特征在于,当所述第一用户输入信息样本的标签包括通过对第一用户输入信息样本进行语义识别得到的语义信息时,所述通过语义识别模型对第一用户输入信息样本提取文本特征信息前,还包括:
获取无标注的第一用户输入信息样本;
对所述第一用户输入信息样本进行语义识别,得到所述第一用户输入信息样本的第一语义信息;
基于所述第一语义信息生成所述第一用户输入信息样本的伪标签。


5.根据权利要求1所述的语义识别方法,其特征在于,当所述第一用户输入信息样本的标签包括从所述第一用户输入信息样本的回复信息中获取的信息时,所述通过语义识别模型对第一用户输入信息样本提取文本特征信息前,还包括:
获取所述第一用户输入信息样本所在的对话信息中,针对所述第一用户输入信息样本的回复信息;
从所述回复信息中获取所述第一用户输入信息样本的第二语义信息;
基于所述第二语义信息生成所述第一用户输入信息样本的弱标签。


6.根据权利要求4所述的语义识别方法,其特征在于,所述对所述第一用户输入信息样本进行语义识别,得到所述第一用户输入信息样本的第一语义信息,包括:
通过已标注的所述第二用户输入信...

【专利技术属性】
技术研发人员:施晓明陈曦张子恒郑冶枫车万翔刘挺
申请(专利权)人:腾讯科技深圳有限公司哈尔滨工业大学
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1