一种基于光子晶体光纤探头的钢材腐蚀传感器制造技术

技术编号:26460856 阅读:22 留言:0更新日期:2020-11-25 17:30
本实用新型专利技术属于传感器技术领域,公开了一种基于光子晶体光纤探头的钢材腐蚀传感器。钢材腐蚀传感器包括单模光纤:纤芯、包层、涂覆层;光子晶体光纤:纤芯,包层,包层气孔,铁薄膜。所述传感器的光子晶体光纤激发态包层模式对外界介质折射率高度敏感,与钢材主要成分相似的铁薄膜腐蚀后会改变其周围的折射率,通过对晶体光纤外界折射率的实时监控间接有效地监测钢材腐蚀状况。该传感器具有制作简单、体积小、强度大,灵敏度高等优点,可以有效实现对建筑工程中钢材腐蚀状况无损、实时、准确的测量,具有广阔的应用前景。

【技术实现步骤摘要】
一种基于光子晶体光纤探头的钢材腐蚀传感器
本技术涉及一种基于光子晶体光纤探头的钢材腐蚀传感器,属于结构健康监测领域,尤其用于钢筋混凝土结构以及钢结构中钢材的腐蚀监测。
技术介绍
钢材是建筑结构中常用的工程材料之一,例如钢筋混凝土结构中的钢筋,劲性结构中的型钢以及钢结构,都是由钢材制备而成。钢材的腐蚀是影响这些建筑结构耐久性的重要因素之一。我国每年因钢材腐蚀导致的建筑结构破坏甚至倒塌的事故比比皆是,造成了巨大的经济损失和人员伤亡。因此,须要实现有效监测建筑结构中钢材的腐蚀,及时对损伤结构加固维修,防止灾难的发生。当前对钢材腐蚀监测的方法可大致分为电化学方法和非电化学方法两大类。电化学方法直接监测腐蚀参数来判断钢材的腐蚀状态,如腐蚀电位、耐腐蚀性和腐蚀速率。非电化学方法通常则是通过间接监测腐蚀引起的结构体积变形、分层和开裂等间接监测钢材腐蚀程度。常见的非电化学监测腐蚀的方法有声发射法,超声导播法和数字图像相关法等。声发射属于被动监测,只能监测正在扩展的裂缝,此外,声发射传感器监测范围不易确定,且采集信号容易受到环境因素干扰。数字图像相关法具有测量方便、测量量程广、图像采样频率高的优点,但识别对应点的像素块位置发生开裂或由于应力集中造成不均匀变形会给识别带来一定困难,如果应用于实际工程,其图像采集设备的布置对于待测构件的周围环境与空间也有一定要求。光纤传感器由于其尺寸小,重量轻,抗电磁干扰,抗腐蚀性强等一系列优点,近年来得到了越来越广泛的应用,一些用来监测钢材腐蚀的光纤传感器也应用而生。然而,传统的监测钢材腐蚀的光纤传感器存在监测周期长,监测灵敏度低以及监测准确度低等问题。因此,提供一种制作简单,对钢材腐蚀状态灵敏度高,监测结果准确可靠的光纤传感器是十分必要的。
技术实现思路
为解决上述技术问题,本技术提供了一种基于光子晶体光纤探头的钢材腐蚀传感器,该传感器的最大特点是对周围环境折射率的改变非常敏感,可以通过测量外界折射率的变化间接监测钢材的腐蚀程度。这种基于光子晶体光纤探头的钢材腐蚀传感器制作简单,可以无损、实时监测构件中钢材的腐蚀,有效判断结构的损伤程度,从而保障重要工程结构的安全。本技术的技术方案:一种基于光子晶体光纤探头的钢材腐蚀传感器,包括单模光纤1、光子晶体光纤(PCF)探头2、三端口环形器3、放大自发辐射ASE激光器4和光谱分析仪5;其中单模光纤1包括单模光纤纤芯6、单模光纤包层7和涂覆层8;光子晶体光纤探头2包括光子晶体光纤纤芯11、空气孔道10、光子晶体光纤包层12和铁薄膜14;所述的单模光纤1一端连接三端口环形器3的其中一个接口,另一端与光子晶体光纤探头2熔接,单模光纤1与光子晶体光纤探头2熔接处存在空气泡9,所述的空气泡9作为第一反射镜15;所述的三端口环形器3的另外两个端口分别连接放大自发辐射ASE激光器4和光谱分析仪5;所述的光子晶体光纤探头2的另一端是一个熔接形成的球体13,所述的球体尖端为第二反射镜16。所述的铁薄膜14的厚度根据传感器灵敏度和使用寿命要求来进行调整。所述的光子晶体光纤探头2的长度根据监测对象以及监测灵敏度要求调整。所述的铁薄膜14包裹在光子晶体光纤探头2的外表面,且覆盖整个光子晶体光纤探头2的长度。所述的铁薄膜14的厚度根据传感器灵敏度和使用寿命要求来进行调整。所述的基于光子晶体光纤探头的钢材腐蚀传感器的传输原理:基于光子晶体光纤探头的钢材腐蚀传感器原理如图5(a),由ASE激光器发射的光源经三端口环形器传输至单模光纤的纤芯,从图5(a)可以看出,当在单模光纤中传播的光到达与光子晶体光纤的拼接区域空气泡时,一部分光被反射回来;另一部分光穿过气泡,空气泡作为发散透镜而使光发生衍射,有一部分光被激发至包层中进行传输,形成包层模式,激发态包层模式对外界折射率的变化非常敏感,外界折射指标的变化会引起包层模式有效折射率的改变。包层模式的有效折射率是波长的外界折射率的函数,即其中,λ为传输光的波长,next是外界折射率。而纤芯模式至于波长相关,即通过光子晶体光纤传播的模态在到达器件末端的球体端面时被反射回来,当再次到达拼接点时,存在相位差的纤芯模式和包层模式相互干扰,该设备的工作原理实质上是一个多光束干涉的迈克尔逊干涉仪。最终,返回至单模光纤的传输光再次经由三端口环形器传输至光谱分析仪。反射光的总反射电场由两个反射镜的总反射电场之和来估计:式中,E0是入射光光场,α1表示第一反射镜的传输损耗,R1和R2分别表示第一反射镜和第二反射镜的反射率,可表示为式中,ni分别表示单模光纤、气泡和光子晶体光纤的折射率。表示相位,可表示为Li表示光子晶体光纤与单模光纤连接处与实心球体尖端之间的距离,此值是一个常量。反射光的干涉光谱强度最终表示为由于低碳钢的主要成分是铁,因此用沉积在光子晶体光纤外侧的铁薄膜来模拟广泛用于工程中的低碳钢。当铁薄膜被腐蚀时,光子晶体光纤周围介质折射率从n变为n′,最终导致光谱仪接收到的反射光的整体响应谱线发生波长漂移和光强变化。通过对反射光谱的分析,实现间接监测铁薄膜的腐蚀状态。令光谱强度的变化为ΔI(λ),即反射光光谱ΔIR(λ)与入射光光谱ΔI0(λ)的差值ΔI(λ)=ΔIR(λ)-ΔI0(λ)(5)腐蚀引起的铁薄膜质量损失百分比η与光谱强度的变化ΔI的关系可用下式表示:ΔI=γ(η)(6)式中,γ为铁薄膜质量损失百分比η与光谱强度变化ΔI的函数关系,由实验拟合确定。因此,将这种基于光子晶体光纤探头的钢材腐蚀传感器布置在建筑结构中钢构件周围,通过分析光子晶体光纤探头的钢材腐蚀传感器反射光谱的改变量ΔI,再依据关系式(6)就可得出铁薄膜质量损失百分比γ,即可实现铁薄膜腐蚀状态的定量监测,又因为铁薄膜与低碳钢的成分相似,所以被测钢材的腐蚀状态定量监测也由此实现。与现有技术相比,本技术的有益效果在于:(1)本技术通过基于光子晶体光纤探头的钢材腐蚀传感器反射光光谱的变化,间接实现对钢材腐蚀量的监测。(2)本技术将单模光纤和光子晶体光纤巧妙结合,通过合理选择熔接参数控制塌陷区域尺寸,形成更加优异的干涉谱,对钢材腐蚀监测更加精确。(3)本技术体积很小,可将其埋入被测材料中监测钢材腐蚀,不会影响待测材料的性能,实现对建筑结构的无损监测。(4)本技术灵敏度高,经由空气泡激发出来的包层模式对外界介质折射率的变化非常敏感,使得该传感器对其周围钢材腐蚀状况高度灵敏。(5)本技术具有较高的分辨率,可以实现高精度监测钢材腐蚀。(6)本技术的光子晶体光纤探头强度高,保证了传感器的长期稳定运行。(7)本技术制作简单,布设方便,且造价低廉,可以实现对建筑结构中钢材腐蚀的实时监测,适合推广,具有较高的应用前景。附图说明图1(a)为本技术基于光子晶体光纤本文档来自技高网
...

【技术保护点】
1.一种基于光子晶体光纤探头的钢材腐蚀传感器,其特征在于,该基于光子晶体光纤探头的钢材腐蚀传感器包括单模光纤(1)、光子晶体光纤探头(2)、三端口环形器(3)、放大自发辐射ASE激光器(4)和光谱分析仪(5);其中单模光纤(1)包括单模光纤纤芯(6)、单模光纤包层(7)和涂覆层(8);光子晶体光纤探头(2)包括光子晶体光纤纤芯(11)、空气孔道(10)、光子晶体光纤包层(12)和铁薄膜(14);/n所述的单模光纤(1)一端连接三端口环形器(3)的其中一个接口,另一端与光子晶体光纤探头(2)熔接,单模光纤(1)与光子晶体光纤探头(2)熔接处存在空气泡(9),所述的空气泡(9)作为第一反射镜(15);/n所述的三端口环形器(3)的另外两个端口分别连接放大自发辐射ASE激光器(4)和光谱分析仪(5);/n所述的光子晶体光纤探头(2)的另一端是一个熔接形成的球体(13),所述的球体的尖端为第二反射镜(16)。/n

【技术特征摘要】
1.一种基于光子晶体光纤探头的钢材腐蚀传感器,其特征在于,该基于光子晶体光纤探头的钢材腐蚀传感器包括单模光纤(1)、光子晶体光纤探头(2)、三端口环形器(3)、放大自发辐射ASE激光器(4)和光谱分析仪(5);其中单模光纤(1)包括单模光纤纤芯(6)、单模光纤包层(7)和涂覆层(8);光子晶体光纤探头(2)包括光子晶体光纤纤芯(11)、空气孔道(10)、光子晶体光纤包层(12)和铁薄膜(14);
所述的单模光纤(1)一端连接三端口环形器(3)的其中一个接口,另一端与光子晶体光纤探头(2)熔接,单模光纤(1)与光子晶体光纤探头(2)熔接处存在空气泡(9),所述的空气泡(9)作为第一反射镜(15);
所述的三端口环形器(3)的另外两个端口分别连接放大自发辐射ASE...

【专利技术属性】
技术研发人员:唐福建赵丽芝李钢李宏男
申请(专利权)人:大连理工大学
类型:新型
国别省市:辽宁;21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1