一种锚杆/锚索剪切屈服破坏断裂模拟计算方法,包括以下步骤:A、在数值模拟软件中,利用pile结构单元构建具备重结点的锚杆结构;B、建立相邻pilesel在重结点处的node‑to‑node类型连接,并设置相关属性;C、通过fish函数计算源结点node(2n)与目标结点node(2n+1)的相对剪切位移,并判断是否超过最大剪切位移u
A fracture simulation method for shear yield failure of anchor rod / cable
【技术实现步骤摘要】
一种锚杆/锚索剪切屈服破坏断裂模拟计算方法
本专利技术涉及工程支护结构模拟分析
,具体为一种锚杆/锚索剪切屈服破坏断裂模拟计算方法。
技术介绍
自1956年我国在煤矿围岩中引入锚杆支护,至今已有60余年历史。锚杆支护凭借其工程造价低、便于施工以及能够有效控制围岩变形,提高围岩稳定性等特点,已发展为一种常规的支护手段,被广泛应用公路铁路工程、水电工程、煤矿开采以及地下空间工程等。研究锚杆的锚固力学机理,建立完备的锚固理论体系,继而定量评价锚杆对围岩的支护抗力,完善的锚杆支护设计理论一直是该领域众多学者的核心工作。目前,关于锚杆对加固体的轴向约束作用的研究,众多学者通过室内和现场试验、理论分析以及数值分析,已经取得了丰硕的成果。但是,关于锚杆对加固体的横向约束作用的问题,现阶段的科学认识还远落后于工程实践,致使出现大量锚杆发生拉剪破坏断裂的工程问题。自1974年S.Bjurstrom通过实验研究锚固花岗岩节理剪切强度以来,锚固节理岩体中锚杆在拉剪荷载作用下的力学特性引起了广泛重视。通过开展大量的加锚节理岩体剪切实验,人们取得了丰富的实验成果。但是由于锚固节理岩体锚杆锚固机理的影响因素众多,机制复杂,锚固节理岩体锚固理论研究相当落后。理论认识上的缺陷,致使在数值分析上,一方面,现有的商业数值分析软件鲜有能够真实反映锚杆横向抗剪作用的结构模型;另一方面,缺乏对锚杆结构单元横向抗剪性能的二次开发;最后,采用数值模拟手段研究加锚节理岩体锚杆锚固机理的研究极少。目前针对数值计算中无法实现锚杆剪切破坏断裂失效的问题,是通过fish编程语言进行二次开发,将锚杆的剪切屈服判据Fs(i)≥Fsmax(i)引入pile结构单元,得到了具备剪切破坏断裂失效的修正pile单元。但该修正pile单元的剪切破坏断裂是通过控制剪力超过阈值的结构单元的拉弯破坏断裂来实现的,意味着不能独立考虑锚杆的剪切破坏断裂和拉弯破坏断裂,此外,该修正pile单元不具备剪切屈服变形能力。
技术实现思路
针对上述问题,本专利技术提出一种锚杆/锚索剪切屈服破坏断裂模拟计算方法,能独立模拟锚杆的剪切破坏断裂。为实现上述目的,本专利技术采用的技术方案是:一种锚杆/锚索剪切屈服破坏断裂模拟计算方法,包括以下步骤:A.在数值模拟软件中,利用pile结构单元构建具备重结点的锚杆结构,具体包括以下步骤:(1)根据锚杆两个端点坐标以及单元划分数nmax,通过程序生成nmax+1个点坐标A1~Anmax+1,对应将锚杆均分成nmax段时所有均分段的端点坐标集合,An与An+1表示第n段的两个端点;(2)循环n=1~nmax,将nseg设置为1,以点An与An+1作为第n段的两个端点生成pile(n),此时pile(n),n=1~nmax的集合代表此锚杆;(3)通过步骤(2)的设置,系统自动生成nmax个pilesel(n),n=1~nmax,每个pilesel两端有两个独立结点,共2nmax个结点,此时相邻pilesel之间重合部位处的两个结点独立无相互作用,且每个结点按默认属性自动生成node-to-zone类型link,共2nmax个link;B.建立相邻pilesel在重结点处的node-to-node类型连接,并设置相关属性,具体包括以下步骤:(4)在两个结构单元的重合点处将两结点之一的一个结点的node-to-zone类型link删除;(5)以重合部位处无link的结点作为源结点,另一结点作为目标结点,建立node-to-node类型link,link的属性设置为:1、4、5、6方向为rigid,2、3方向为Lindeform或nydeform;(6)设置Lindeform或nydeform的弹簧参数:面积area,单位面积刚度k,压屈服强度yc,拉屈服强度yt以及裂缝开关gap;C.描述锚杆剪切屈服后的破坏断裂特性:通过fish函数计算源结点node(2n)与目标结点node(2n+1)的相对剪切位移,并判断是否超过最大剪切位移,若超过,则判断此处锚杆发生剪切破坏断裂,设置源结点的link描述剪切破坏断裂。进一步的,上述步骤(4)中,为了便于程序控制,采用删除除锚杆两端点外重合部位处所有奇数或偶数编号的link。进一步的,上述步骤(6)中,面积area设置为1、单位面积刚度k取值使重结点在剪切弹性段近似刚性连接,裂缝开关gap=off,压屈服强度yc和拉屈服强度yt作为剪切屈服荷载指标,设置为:yc=yt=Fs/area=Fs/m2,Fs表示锚杆/锚索的剪切屈服荷载。进一步的,上述步骤C中,最大剪切位移计算公式为:umax=(γmax-γe)l其中,γe为杆体横向最大弹性剪切应变,γmax为杆体横向极限剪切应变,l表示结点所属结构单元的单元长度。进一步的,上述步骤C中,设置源结点的link描述剪切破坏断裂的方法包括以下三种:(1)将此link所有方向的属性设置为free;(2)直接删除此link;(3)删除此link,并重新建立此link对应的源结点的node-to-zone类型link,link属性设置按照pile结构单元结点link的默认设置。本专利技术的有益效果为:本专利技术所提供的一种锚杆/锚索剪切屈服破坏断裂模拟计算方法,利用pile结构单元和link构建具备重结点的锚杆结构,在剪切中原本处于重合位置的两个结点在剪切方向发生了相对错动,通过fish函数计算两个节点的相对剪切位移,并判断是否超过最大剪切位移,进而判断此处锚杆是否发生剪切破坏断裂,使pile具备剪切破坏断裂功能,本专利技术提出的修正pile单元在描述杆体剪切屈服以及破坏断裂失效上结果有效并且合理可靠。附图说明图1为本专利技术提供的一种锚杆/锚索剪切屈服破坏断裂模拟计算方法的流程图。图2为在数值模拟软件中利用pile结构单元构建锚杆的数值模型的流程图。图3为pile结合link生成具有剪切屈服特性的锚杆数值模型过程示意图,其中,(a)为所有pile-id均相同时的node和link生成情况,(b)为所有构件拥有不同pile-id的node和link生成情况,表示,(c)为删除node(2n)的node-to-zonelink,建立新的node-to-zonelink。图4为在数值模型中实现锚杆剪切破坏的流程图。图5为修正pile单元力学模型。图6为修正模型剪切变形特征。图7为实施例中锚固节理面双剪切实验数值模拟模型。图8为实施例中中间混凝土块受力图。图9为实施例中玻璃钢锚杆剪切实验结果。图10为实施例中螺纹钢锚杆剪切实验结果。图11为实施例中高强锚索剪切实验结果。图12为实施例中玻璃钢锚杆剪力—位移曲线。图13为实施例中螺纹钢锚杆剪力—位移曲线。图14为实施例中高强锚索剪力—位移曲线。图15为实施例中玻璃钢锚本文档来自技高网...
【技术保护点】
1.一种锚杆/锚索剪切屈服破坏断裂模拟计算方法,其特征在于,包括以下步骤:/nA.在数值模拟软件中,利用pile结构单元构建具备重结点的锚杆结构,具体包括以下步骤:/n(1)根据锚杆两个端点坐标以及单元划分数n
【技术特征摘要】
1.一种锚杆/锚索剪切屈服破坏断裂模拟计算方法,其特征在于,包括以下步骤:
A.在数值模拟软件中,利用pile结构单元构建具备重结点的锚杆结构,具体包括以下步骤:
(1)根据锚杆两个端点坐标以及单元划分数nmax,通过程序生成nmax+1个点坐标A1~Anmax+1,对应将锚杆均分成nmax段时所有均分段的端点坐标集合,An与An+1表示第n段的两个端点;
(2)循环n=1~nmax,将nseg设置为1,以点An与An+1作为第n段的两个端点生成pile(n),此时pile(n),n=1~nmax的集合代表此锚杆;
(3)通过步骤(2)的设置,系统自动生成nmax个pilesel(n),n=1~nmax,每个pilesel两端有两个独立结点,共2nmax个结点,此时相邻pilesel之间重合部位处的两个结点独立无相互作用,且每个结点按默认属性自动生成node-to-zone类型link,共2nmax个link;
B.建立相邻pilesel在重结点处的node-to-node类型连接,并设置相关属性,具体包括以下步骤:
(4)在两个结构单元的重合点处将两结点之一的一个结点的node-to-zone类型link删除;
(5)以重合部位处无link的结点作为源结点,另一结点作为目标结点,建立node-to-node类型link,link的属性设置为:1、4、5、6方向为rigid,2、3方向为Lindeform或nydeform;
(6)设置Lindeform或nydeform的弹簧参数:面积area,单位面积刚度k,压屈服强度yc,拉屈服强度yt以及裂缝开关gap;
C.描述锚杆剪切屈服后的破坏断裂...
【专利技术属性】
技术研发人员:黄书岭,丁秀丽,秦洋,付敬,张练,钟鹏举,
申请(专利权)人:长江水利委员会长江科学院,
类型:发明
国别省市:湖北;42
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。