输入受限的航空发动机最大推力状态鲁棒容错控制器制造技术

技术编号:26171806 阅读:58 留言:0更新日期:2020-10-31 13:45
本发明专利技术提出一种输入受限的航空发动机最大推力状态鲁棒容错控制器。最大推力状态鲁棒控制器组容错控制模块产生控制向量v并输出给输入限制模块,输入限制模块产生限制后的控制输入向量u并输出给航空发动机本体,气路部件故障诊断模块诊断发动机的气路部件故障;最大推力状态鲁棒控制器组容错控制模块计算得到适应的鲁棒控制器,并产生控制输入向量u。本发明专利技术能够在保证发动机安全工作的前提下,在发动机机气路部件故障的情况下在最大推力状态依旧对真实发动机进行良好控制,具有较强的鲁棒性,最大限度的提高发动机在最大推力状态的性能,使发动机气路部件故障时在最大推力状态不仅稳定工作,并且具有最优的性能,提高战斗机的机动性能。

Robust fault tolerant controller for Aeroengine maximum thrust state with input constraints

【技术实现步骤摘要】
输入受限的航空发动机最大推力状态鲁棒容错控制器
本专利技术涉及航空发动机控制
,尤其涉及一种输入受限的航空发动机最大推力状态鲁棒容错控制器。
技术介绍
航空发动机是一个复杂的非线性动力学系统,其控制系统容易受到工作条件,发动机性能下降,环境条件变化的影响,并且很难事先知道外部干扰和测量噪声的影响。由于飞机发动机的工作过程非常复杂,难以建立准确的数学模型,所以数学模型与实际系统之间总是存在差异。因此,有必要设计一种鲁棒控制器,用于在外部干扰信号,噪声干扰,未建模的动态特性和参数变化的情况下稳定航空发动机控制系统,并具有良好的性能。战斗机由于需要实现高机动性,发动机的最大推力状态的性能及安全性至关重要。传统的鲁棒控制器虽然可以对发动机在最大推力状态实现稳定控制。然而,现代战机对航空发动机性能的要求不断提高,其结构也越来越复杂,并且由于发动机工作环境的恶劣多变,发动机故障约占飞机总故障的1/3。其中,气路部件故障占发动机总体故障的90%以上,其维护费用占发动机总体维护费用的60%。为了保证发动机安全工作并使故障发动机提供足够的性能来保证飞机安全飞行或具有高的机动性,必须对故障的发动机性能进行恢复,并且对发动机进行容错控制,保证控制系统正常稳定工作且具有良好的性能。因此,研究发动机气路部件故障容错控制方法具有重要意义。传统的气路部件故障容错控制方法在航空发动机出现气路部件故障时通过修正控制规律,使得发动机的推力与油门杆始终匹配,有效的保证了发动机的推力。然而,这些设计方法并没有解决当前控制器和发动机模型不匹配从而导致控制系统性能下降甚至不稳定的问题。当发动机发生气路部件故障时,发动机在同一工作点的线性化模型也会发生较大变化。因此,根据正常状态的发动机模型设计的控制器一般无法保证气路部件故障时发动机的性能,甚至无法保证控制系统的闭环稳定。此外,过大的控制输入会导致发动机损坏,因此我们需要考虑控制输入受限的控制器的设计。
技术实现思路
为解决现有技术存在的问题,本专利技术提出一种输入受限的航空发动机最大推力状态鲁棒容错控制器,具有较强的鲁棒性,并且在最大推力状态能够在发动机机气路部件故障的情况下依旧对真实发动机进行良好控制,保证发动机安全工作,充分发挥发动机最大推力状态的性能,提高飞机的安全性和性能,提高战斗机的机动性。并且考虑控制输入受限,保证发动机安全工作。本专利技术的技术方案为:所述一种输入受限的航空发动机最大推力状态鲁棒容错控制器,其特征在于:包括最大推力状态鲁棒控制器组容错控制模块、输入限制模块和气路部件故障诊断模块;其中最大推力状态鲁棒控制器组容错控制模块、输入限制模块、气路部件故障诊断模块与航空发动机本体以及航空发动机上的若干传感器组成气路部件故障调度控制回路;所述最大推力状态鲁棒控制器组容错控制模块产生控制向量v并输出给输入限制模块,输入限制模块产生限制后的控制输入向量u并输出给航空发动机本体,传感器得到航空发动机测量参数y;控制输入向量u以及测量参数y共同输入到气路部件故障诊断模块,气路部件故障诊断模块诊断发动机的气路部件故障情况得到航空发动机的健康参数h,并输出到最大推力状态鲁棒控制器组容错控制模块;所述输入限制模块限制了控制输入向量的幅值,避免给发动机过大的控制输入导致发动机损坏;所述最大推力状态鲁棒控制器组容错控制模块内设计有若干鲁棒控制器,所述鲁棒控制器是利用若干线性不确定性发动机模型而分别设计得到的,所述线性不确定性发动机模型是对航空发动机最大推力状态下的、不同气路部件故障下的航空发动机非线性模型进行线性化后再加入摄动块得到的;所述最大推力状态鲁棒控制器组容错控制模块根据输入的健康参数h,利用内部设计的若干鲁棒控制器计算得到适应的鲁棒控制器,该鲁棒控制器根据参考输入r和测量参数y的差值e产生控制输入向量u。进一步的,所述最大推力状态鲁棒控制器组容错控制模块内设计若干鲁棒控制器的过程为:在航空发动机最大推力状态对包含健康参数的发动机非线性模型进行线性化得到含有健康参数的线性化模型,通过调整健康参数的值,得到分别在发动机无气路部件故障和特定气路部件故障处的11个线性化模型再加入摄动块得到11个线性不确定性发动机模型,并对这11个线性不确定性发动机模型分别设计相应的鲁棒控制器从而组成最大推力状态鲁棒控制器组。进一步的,所述气路部件故障诊断模块中包括非线性机载发动机模型和线性化卡尔曼滤波器;所述非线性机载发动机模型为带健康参数的发动机非线性模型:y=g(x,u,h)其中为控制输入向量,为状态向量,为输出向量,为健康参数向量,f(·)为表示系统动态的n维可微非线性向量函数,g(·)为产生系统输出的m维可微非线性向量函数;非线性机载发动机模型输入为控制输入向量u以及上一周期的健康参数h,其输出的健康稳态参考值(xaug,NOBEM,yNOBEM)作为线性化卡尔曼滤波器当前周期的估计初始值;所述线性化卡尔曼滤波器的输入为测量参数y以及非线性机载发动机模型输出的健康稳态参考值(xaug,NOBEM,yNOBEM),根据公式计算得到当前周期的发动机的健康参数h;其中K为卡尔曼滤波的增益,满足P为Ricati方程的解;系数Aaug和Caug根据公式确定,而A、C、L、M是将健康参数h看作发动机的控制输入,并对非线性机载发动机模型在健康稳态参考点处进行线性化得到的反映发动机性能退化的增广线性状态变量模型的系数:w为系统噪声,v为测量噪声,相应的协方差矩阵为对角阵Q和R。进一步的,所述最大推力状态鲁棒控制器组容错控制模块根据输入的健康参数h插值得到的适应的鲁棒控制器。进一步的,所述最大推力状态鲁棒控制器组容错控制模块根据航空发动机最大推力状态对应发动机无部件故障的控制器K0,各种典型部件故障Δhbase_j的控制器Δhbase_j表示向量Δh的第j个元素的值为Δhbase,其他元素的值为0,即Δhbase_j表示10种不同的部件故障,例如Δhbase_1表示风扇发生了故障且风扇的效率变化量为Δhbase。根据公式计算得到航空发动机最大推力状态处发动机的当前部件故障程度(健康参数为h)下的鲁棒控制器K(式中Δhj为向量Δh的第j个元素;仅考虑||Δh||≤||Δhmax||的发动机气路部件故障情况,当||Δh||>||Δhmax||发动机已失效)。进一步的,所述输入限制模块采用多维矩形饱和函数,控制输入向量u为:其中v1和vm为控制向量v的元素,v1,max和vm,max为控制向量v对应元素的限幅值。进一步的,所述测量参数包括进气道出口、风扇出口、压气机出口、高压涡轮后、低压涡轮后的温度和压力,风扇转速和压气机转速。有益效果与现有技术相比较,本专利技术的输入受限的航空发动机最大推力状态鲁棒容错控制器利用传统增益调度控制器中固有的模块,通本文档来自技高网
...

【技术保护点】
1.一种输入受限的航空发动机最大推力状态鲁棒容错控制器,其特征在于:包括最大推力状态鲁棒控制器组容错控制模块、输入限制模块和气路部件故障诊断模块;/n其中最大推力状态鲁棒控制器组容错控制模块、输入限制模块、气路部件故障诊断模块与航空发动机本体以及航空发动机上的若干传感器组成气路部件故障调度控制回路;/n所述最大推力状态鲁棒控制器组容错控制模块产生控制向量v并输出给输入限制模块,输入限制模块产生限制后的控制输入向量u并输出给航空发动机本体,传感器得到航空发动机测量参数y;控制输入向量u以及测量参数y共同输入到气路部件故障诊断模块,气路部件故障诊断模块解算得到航空发动机的健康参数h,并输出到最大推力状态鲁棒控制器组容错控制模块;/n所述输入限制模块限制了控制输入向量的幅值,避免给发动机过大的控制输入导致发动机损坏;/n所述最大推力状态鲁棒控制器组容错控制模块内设计有若干鲁棒控制器,所述鲁棒控制器是利用若干线性不确定性发动机模型而分别设计得到的,所述线性不确定性发动机模型是对航空发动机最大推力状态下的、不同气路部件故障下的航空发动机非线性模型进行线性化后再加入摄动块得到的;/n所述最大推力状态鲁棒控制器组容错控制模块根据输入的健康参数h,利用内部设计的若干鲁棒控制器计算得到适应的鲁棒控制器,该鲁棒控制器根据参考输入r和测量参数y的差值e产生控制输入向量u。/n...

【技术特征摘要】
1.一种输入受限的航空发动机最大推力状态鲁棒容错控制器,其特征在于:包括最大推力状态鲁棒控制器组容错控制模块、输入限制模块和气路部件故障诊断模块;
其中最大推力状态鲁棒控制器组容错控制模块、输入限制模块、气路部件故障诊断模块与航空发动机本体以及航空发动机上的若干传感器组成气路部件故障调度控制回路;
所述最大推力状态鲁棒控制器组容错控制模块产生控制向量v并输出给输入限制模块,输入限制模块产生限制后的控制输入向量u并输出给航空发动机本体,传感器得到航空发动机测量参数y;控制输入向量u以及测量参数y共同输入到气路部件故障诊断模块,气路部件故障诊断模块解算得到航空发动机的健康参数h,并输出到最大推力状态鲁棒控制器组容错控制模块;
所述输入限制模块限制了控制输入向量的幅值,避免给发动机过大的控制输入导致发动机损坏;
所述最大推力状态鲁棒控制器组容错控制模块内设计有若干鲁棒控制器,所述鲁棒控制器是利用若干线性不确定性发动机模型而分别设计得到的,所述线性不确定性发动机模型是对航空发动机最大推力状态下的、不同气路部件故障下的航空发动机非线性模型进行线性化后再加入摄动块得到的;
所述最大推力状态鲁棒控制器组容错控制模块根据输入的健康参数h,利用内部设计的若干鲁棒控制器计算得到适应的鲁棒控制器,该鲁棒控制器根据参考输入r和测量参数y的差值e产生控制输入向量u。


2.根据权利要求1所述一种输入受限的航空发动机最大推力状态鲁棒容错控制器,其特征在于:所述最大推力状态鲁棒控制器组容错控制模块内设计若干鲁棒控制器的过程为:在航空发动机最大推力状态对包含健康参数的发动机非线性模型进行线性化得到含有健康参数的线性化模型,通过调整健康参数的值,得到分别在发动机无气路部件故障和特定气路部件故障处的11个线性化模型再加入摄动块得到11个线性不确定性发动机模型,并对这11个线性不确定性发动机模型分别设计相应的鲁棒控制器从而组成最大推力状态鲁棒控制器组。


3.根据权利要求1或2所述一种输入受限的航空发动机最大推力状态鲁棒容错控制器,其特征在于:所述最大推力状态鲁棒控制器组容错控制模块根据输入的健康参数h插值得到适应的鲁棒控制器。


4.根据权利要求3所述一种输入受限的航空发动机最大推力状态鲁棒容错控制器,其特征在于:根据发动机最大推力状态对应发动机无部件故障的控制器K0,各种典型部件故障Δhbase_j的控制器Δh...

【专利技术属性】
技术研发人员:张猛缑林峰刘志丹蒋宗霆
申请(专利权)人:西北工业大学
类型:发明
国别省市:陕西;61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1