对电源电压和温度变化不敏感的温度检测电路制造技术

技术编号:2554755 阅读:229 留言:0更新日期:2012-04-11 18:40
一种温度检测电路,包括:    运算放大器,用于接收带隙参考电压和第一电压;    参考电流发生器,用于根据所述运算放大器的输出信号产生所述第一电压和参考电压;    温度检测电压发生器,用于根据环境温度和所述运算放大器的输出信号产生温度检测电压;和    比较器,用于比较所述参考电压信号和所述温度检测电压信号以产生温度控制信号。(*该技术在2023年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及一种半导体集成电路,更具体地说,涉及一种对电源电压和温度变化不敏感的温度检测电路
技术介绍
许多生产过程对过程控制实施温度监测,而且,微控制器或微处理器以数字形式使用测量温度的方法。集成电路(IC)通常不使用外部组件来测量温度,而是以数字形式直接读取温度。这种IC温度检测器可以被嵌入到其他集成电路中。通常,IC具有预定的工作温度范围,超过该范围,就会产生包括设备失效在内的错误。为确保IC不会工作在预定工作温度范围之外,就在IC内部配置温度检测器。如果IC的温度超过了预定温度,温度检测器使IC停止其工作,以防止数据错误和可靠性问题的发生。然而,常规温度检测电路通常对电源电压和半导体过程变化很敏感。因此,需要一种对电源电压变化和温度变化不敏感的温度检测电路。
技术实现思路
因此,本专利技术旨在提供一种温度检测电路,该电路从实质上避免了由于相关技术的局限和缺点而带来的一个或多个问题。本专利技术的一个目的是提供一种对电源电压和温度变化不敏感的温度检测电路。对于本专利技术的其他优点、目的和特点,其中一部分将在随后的描述中进行阐述,一部分对本领域普通技术人员来说通过以下的分析是显而易见的,或者可以通过本专利技术的实践来理解。可以通过本专利技术的书面说明书及其权利要求书以及附图中具体指出的结构来认识和获得本专利技术的目的和其他优点。根据本专利技术的实施例,温度检测电路包括运算放大器、参考电流发生器、温度检测电压发生器、比较器和带隙(band gap)参考电压发生器。运算放大器接收带隙参考电压和第一电压;参考电流发生器根据运算放大器的输出信号产生第一电压和参考电压;温度检测电压发生器根据环境温度和运算放大器的输出信号产生温度检测电压;比较器将参考电压和温度检测电压进行比较,并产生温度控制信号;带隙参考电压发生器产生带隙参考电压。带隙参考电压发生器包括第一参考电流单元,该单元包含串联在电源电压和接地电压之间的第一PMOS晶体管、第一电阻器、第一PNP晶体管。带隙参考电压发生器还包括第二参考电流单元,该单元包含串联在电源电压和接地电压之间的第二PMOS晶体管、第二电阻器、第三电阻器和第二PNP晶体管。带隙参考电压发生器包括运算放大器,该运算放大器包含连接到第一电阻器和第一PNP晶体管之间的第一节点的第一输入端子、连接到第二电阻器和第三电阻器之间的第二节点的第二输入端子和连接到第一和第二PMOS晶体管的栅极的输出端子。第一和第二PNP晶体管具有连接到偏置电压的基极。参考电流发生器包括第一PMOS晶体管以及串联在第一PMOS晶体管的漏极和接地电压之间的第一到第三电阻器,其中第一PMOS晶体管的源极连接到电源电压、栅极连接到运算放大器的输出端子。这里,第一电阻器和第二电阻器之间的电压电平为第一电压。温度检测电压发生器包括第二PMOS晶体管、串联到第二PMOS晶体管漏极的第四和第五电阻器以及位于第五电阻器和接地电压之间的作二极管连接(diode-connected)的PNP晶体管,其中第二PMOS晶体管的源极连接到电源电压、栅极连接到运算放大器的输出端子。这里,第四电阻器和第五电阻器之间的电压为温度检测电压。因此,即使电源电压和温度发生变化,本专利技术的温度检测电路也能够稳定地检测高温和低温,从而保护集成电路的操作。应该理解,对本专利技术的前面的概述和后面的详细描述都是示例性和解释性的,用于对如权利要求所述的本专利技术进行进一步的说明。附图说明附图能够提供对本专利技术的进一步理解,包含在且构成本申请的一部分,并且阐述本专利技术的实施例,并与说明书一起用来阐述本专利技术的原理。其中图1是根据本专利技术实施例的温度检测电路的简图;图2是图1所示的带隙参考电压发生器的电路图;图3是图1所示的温度检测电路的特性图; 图4是示出产生图1所示温度控制信号的曲线图;和图5是根据本专利技术申请的温度检测电路的特性图。具体实施例方式现在将详细参照本专利技术的优选实施例,附图中将示出其示例。然而,本专利技术不仅局限于本文所描述的实施例,本文的实施例是为了提供对本专利技术的范围及实质的更容易、全面的理解。在可能的情况下,附图中相同的标号表示相同或相似的部分。图1示出根据本专利技术实施例的温度检测电路。参考图1,温度检测电路100包含带隙参考电压发生器110、运算放大器115、参考电流发生器120、温度检测电压发生器130和比较器140。温度检测电路100是采用CMOS工艺制造的。带隙参考电压发生器110产生带隙参考电压VBGR。带隙参考电压VBGR由运算放大器115接收。参考电流发生器120根据运算放大器115的输出信号产生参考电压VREF。响应于运算放大器115的输出信号,温度检测电压发生器130根据温度变化产生温度检测电压VTD。比较器140将参考电压VREF和温度检测电压VTD进行比较,来产生温度控制信号THDET。带隙参考电压发生器110产生稳定的带隙参考电压VBGR。带隙参考电压VBGR不受电源电压和温度变化的影响。带隙参考电压发生器110可以利用不同的结构来实现,图2所示的带隙参考电压发生器110采用CMOS工艺实现。参考图2,带隙参考电压发生器110包含第一参考电流单元210、第二参考电流单元220和运算放大器230。第一参考电流单元210包含串联在电源电压VDD和接地电压之间的第一PMOS晶体管M1、第一电阻器R1和第一PNP晶体管Q1。第二参考电流单元220包含串联在电源电压VDD和接地电压之间的第二PMOS晶体管M2、第二电阻器R2、第三电阻器R3和第二PNP晶体管Q2。运算放大器230包含第一输入端子,连接到第一电阻器R1和第一PNP晶体管Q1之间的第一节点N1;第二输入端子,连接到第二电阻器R2和第三电阻器R3之间的第二节点N2;和输出端资,连接到第一和第二PMOS晶体管M1、M2的栅极。第一和第二PNP晶体管Q1、Q2具有连接到偏置电压Vbias的基极。带隙参考电压发生器110使用由运算放大器230的输出信号控制的电流源。偏置电流I1和I2依赖于晶体管M1和M2的栅源电压(VGS)。因此,即使运算放大器230的输出发生了改变,如果晶体管M1和M2互相匹配,偏置电流I1和I2也会发生不匹配,因为晶体管M1和M2的栅源电压VGS的变化彼此相等。因此,即使电源电压和温度发生了变化,也会稳定地产生大约1.26V电压电平的带隙参考电压VBGR。再参考图1,参考电流发生器120包含栅极与运算放大器115相连的第一PMOS晶体管MP1和串联到第一PMOS晶体管MP1漏极的第一到第三电阻器R1、R2和R3。第一电流IR1流经第一PMOS晶体管MP1和第一到第三电阻器R1、R2和R3。第一电阻器R1和第二电阻器R2之间的节点电压为第一内部电压Va,第二电阻器R2和第三电阻器R3之间的节点电压为参考电压VREF。运算放大器115执行操作,以便使带隙参考电压VBGR和第一内部电压Va具有相同的电压电平。运算放大器115输出预定电压信号,来接通第一PMOS晶体管MP1。如果第一内部电压Va低于带隙参考电压VBGR,则运算放大器115产生其电平与接地电压VSS完全相等的电压信号,并强接通第一PMOS晶体管MP1,以便使大量的电流IR1流动。流经第二和第三电阻器R2、R3的大量电流IR1提高了第一内本文档来自技高网...

【技术保护点】

【技术特征摘要】

【专利技术属性】
技术研发人员:金灿容
申请(专利权)人:三星电子株式会社
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利