【技术实现步骤摘要】
一种基于深度学习迭代上下采样的图像超分辨率重建方法
本专利技术涉及图像处理领域,尤其涉及一种基于深度学习迭代上下采样的图像超分辨率重建方法。
技术介绍
图像超分辨率重建的应用领域及其宽广,在军事、医学、公共安全和计算机视觉等方面都存在着重要的应用前景。例如,高分辨率医疗图像对于医生做出正确的诊断是非常有帮助的;使用高分辨率卫星图像就很容易从相似物中区别相似的对象;如果能够提供高分辨的图像,计算机视觉中的模式识别的性能就会大大提高。提升图像分辨率的最直接的做法是对采集系统中的光学硬件进行改进,但这种做法受限于制造工艺难以大幅改进、制造成本十分高昂等约束。由此,从软件和算法的角度着手,实现图像超分辨率重建的技术成为了图像处理和计算机视觉等多个领域的热点研究课题。超分辨率图像重建(Superresolutionimagereconstruction,SRIR或SR)是指用信号处理和图像处理的方法,通过软件算法的方式将已有的低分辨率(Low-resolution,LR)图像转换成高分辨率(High-resolution,HR ...
【技术保护点】
1.一种基于深度学习迭代上下采样的图像超分辨率重建算法,其特征在于,所述重建方法包括:/n步骤1:采集原始高分辨率图像;/n步骤2:在特定尺度因子上,利用双三次插值将所述原始高分辨率图像下采样到低分辨率图像;/n步骤3:将低分辨率图像输入到构建的神经网络以重建预测高分辨率图像,所述神经网络包括依次运行的提取低分辨率特征的卷积层、多个反向投影层和重构卷积层,重建方法的具体步骤包括:/n步骤31:提取低分辨率图像特征,将所述低分辨率图像经过一个3*3的卷积层进行特征提取,将提取的特征输入到一个1*1的卷积层来实现对提取特征的降维,得到低分辨率特征图并输出到反向投影层;/n步骤3 ...
【技术特征摘要】
1.一种基于深度学习迭代上下采样的图像超分辨率重建算法,其特征在于,所述重建方法包括:
步骤1:采集原始高分辨率图像;
步骤2:在特定尺度因子上,利用双三次插值将所述原始高分辨率图像下采样到低分辨率图像;
步骤3:将低分辨率图像输入到构建的神经网络以重建预测高分辨率图像,所述神经网络包括依次运行的提取低分辨率特征的卷积层、多个反向投影层和重构卷积层,重建方法的具体步骤包括:
步骤31:提取低分辨率图像特征,将所述低分辨率图像经过一个3*3的卷积层进行特征提取,将提取的特征输入到一个1*1的卷积层来实现对提取特征的降维,得到低分辨率特征图并输出到反向投影层;
步骤32:提取高分辨率图像特征,反向投影层中高分辨率图像和低分辨率图像的关系通过创建可迭代的上-下采样模块来构建,反向投影层包括上采样模块和下采样模块,所述上采样模块对所述低分辨率特征图进行上采样生成高分辨率特征图,所述下采样模块将所述上采样模块生成的所述高分辨率特征图映射到低分辨率空间,生成低分辨率特征图,每个上采样模块和下采样模块的得到的残差值输入到相邻的上采样模块和下采样模块,将每个上采样模块生成的高分辨率特征图拼接到一起送到重构卷积层;
步骤33:超分辨率图像重构,将步骤32拼接后的高分辨率图像特征图通过一个3*3的重构卷积层以生成大小与原始高分辨率图像一致的图像,即得到重建出的预测高分辨率图像;
步骤4:将所述预测高分辨率图像和原始高分辨率图像进行比较,计算得到损失值;
步骤5:当损失值收敛前,更新神经网络的参数,重复步骤3至步骤5;
步骤6:当损失值收敛时,表明超分辨率重建工作完成,结束训练。
2.如权利要求1所述的图像超分辨率重建方法,其特征在...
【专利技术属性】
技术研发人员:胡靖,李欣妍,吴锡,
申请(专利权)人:成都信息工程大学,
类型:发明
国别省市:四川;51
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。