一种特殊线型车道线检测模型的训练方法技术

技术编号:24457966 阅读:36 留言:0更新日期:2020-06-10 16:07
本发明专利技术涉及一种智能驾驶技术领域,具体涉及一种特殊线型车道线检测模型的训练方法;此外,本发明专利技术还涉及一种用该检测模型进行车道线检测的系统。该训练方法包括步骤S101:获取道路样本图像,所述道路样本图像标注有正常车道线与Y型车道线的位置信息;步骤102:将所述道路样本图像输入到预先建立的初始神经网络模型;步骤103:利用所述道路样本图像训练所述初始神经网络模型,得到特殊线型车道线检测模型。对于获取的Y型车道线,采用一个向量来表示车道线位置,所述向量中的数值表示车道线上均匀分布的点的坐标,并且在初始神经网络模型基础上,采用微调的方法,利用道路样本图像,对神经网络进行训练。相比于现有技术,本发明专利技术能很好地解决特殊线型如Y型线检测问题。

A training method for lane line detection model of special line type

【技术实现步骤摘要】
一种特殊线型车道线检测模型的训练方法
本专利技术涉及一种智能驾驶
,具体涉及一种特殊线型车道线检测模型的训练方法。
技术介绍
随着科学技术的发展,自动驾驶、无人车等新兴概念应运而生。车道线检测技术是先进驾驶辅助系统的道路场景分析中的重要元素,是自动驾驶技术中一个不可或缺的部分。具体的,车辆的摄像头等传感器可以获取车辆当前所处的环境的视觉图像,采用车道线检测技术对传感器获取的车辆前方或后方道路图像信息进行处理,可以得到图像中的车道线的位置,从而指导车辆的驾驶。正常的车道线通常以多种样式的标记线的形式标记在道路地面上。在道路出现匝道的地方,通常会出现一种特殊线型的车道线,也就是Y型线,如图1所示。现有的车道线检测方法,一类是基于特征的算法,主要是利用颜色、纹理、形状等信息来提取车道线。但是当路面光照发生变化、标志线磨损或者路面出现水渍、阴影等情况时,都将会影响检测效果。一类是基于模型的算法,这种方法首先估计道路模型,然后利用霍夫变换或者其他图像信息确定模型参数,常用的道路模型有直线模型,抛物线模型,三次样条曲线模型等。大量研究发现:直本文档来自技高网...

【技术保护点】
1.一种特殊线型车道线检测模型的训练方法,包括以下步骤:/n步骤101:获取道路样本图像,所述道路样本图像标注有正常车道线与Y型车道线的位置信息;其中采用一个向量来表示车道线位置,所述向量中的数值表示车道线上均匀分布的点的坐标;其中对于所述Y型车道线,所述向量的长度为M,其中M=2*N;所述向量的维度为N;/n步骤102:将所述道路样本图像输入到预先建立的初始神经网络模型;/n步骤103:利用所述道路样本图像训练所述初始神经网络模型,得到特殊线型车道线检测模型。/n

【技术特征摘要】
1.一种特殊线型车道线检测模型的训练方法,包括以下步骤:
步骤101:获取道路样本图像,所述道路样本图像标注有正常车道线与Y型车道线的位置信息;其中采用一个向量来表示车道线位置,所述向量中的数值表示车道线上均匀分布的点的坐标;其中对于所述Y型车道线,所述向量的长度为M,其中M=2*N;所述向量的维度为N;
步骤102:将所述道路样本图像输入到预先建立的初始神经网络模型;
步骤103:利用所述道路样本图像训练所述初始神经网络模型,得到特殊线型车道线检测模型。


2.根据权利要求1所述的训练方法,所述步骤102中初始神经网络模型中包含空间金字塔池化层,并适应任意大小的图片,以满足不对道路样本图像进行缩放,避免图像信息的损失。


3.根据权利要求1所述的训练方法,以FasterR-CNN作为所述初始神经网络模型。


4.根据权利要求1所述的训练方法,所述步骤103中,所述初始神经网络模型中的卷积层学习所述道路样本图像中的车道线位置的特征;根据学习到的所述道路样本图像的相关特征以及所述初始神经网络模型中的全连接层对相关特征进行映射,得到车道线位置的识别结果,将所述车道线位置的识别结果与所述道路样本图像预先标注的车道线位置进行比较,对所述初始神经网络模型的参数进...

【专利技术属性】
技术研发人员:张驰蒋竺希陈佳辉
申请(专利权)人:初速度苏州科技有限公司
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1