一种全工况下优化车辆横摆动态性能的滑模控制方法,涉及一种横摆动态滑模控制方法。建立能表征车辆横摆率以及侧向速度动态的二自由度车辆动力学方程;根据期望横摆率、侧向速度以及侧倾角速度,设计滑模面和保证闭环系统稳定的滑模控制律表达式;给出通过横摆率超调量与调节时间描述横摆响应动态性能的指标;给出计算横摆率超调量与调节时间的数学表达式;通过优化问题求解,得到使横摆动态最优的滑模控制律参数。通过设计滑模控制器并通过调节滑模面参数实现横摆率超调和调节时间的调整,改进现有横摆稳定控制的不足,给出可保证全工况下优化车辆横摆动态响应性能的滑模控制方法。
【技术实现步骤摘要】
一种全工况下优化车辆横摆动态性能的滑模控制方法
本专利技术涉及一种横摆动态滑模控制方法,尤其是一种全工况下优化车辆横摆动态性能的滑模控制方法,属于车辆驱动控制领域。
技术介绍
车辆在转向时具有如下特性:一、常规工况下,横摆动态表现为过阻尼或大阻尼特性,极限工况下,横摆动态表现为欠阻尼特性;二、常规工况下,横摆动态的过阻尼或大阻尼特性导致横摆响应慢,使车辆转向响应迟缓,极限工况下,横摆动态的欠阻尼特性导致横摆率超调较大,影响车辆的横摆稳定性能。车辆横摆稳定控制是保证车辆行驶安全性的重要主动安全系统,但现有横摆稳定控制策略主要关注横摆率跟踪精度,属横摆稳态性能,或针对特定的极限工况讨论横摆率动态控制性能,缺乏全工况下的横摆动态控制技术。
技术实现思路
针对
技术介绍
存在的问题,本专利技术提供一种全工况下优化车辆横摆动态性能的滑模控制方法。为实现上述目的,本专利技术采取下述技术方案:一种全工况下优化车辆横摆动态性能的滑模控制方法,包括以下步骤:步骤一:建立能表征车辆横摆率以及侧向速度动态的二自由度车辆动力学方程,其中,m为车辆质量,Iz为车辆绕z轴转动惯量,lf为车辆质心到前轴距离,lr为车辆质心到后轴距离,l为车辆前轴到后轴距离,γ为车辆横摆率,vx为车辆纵向速度,vy为车辆侧向速度,Mz为车辆横摆扭矩,Fyi为侧向轮胎力,i=f,r表示前后轴,公式(1)中的侧向轮胎力采用Burckhardt轮胎模型表示,其中,c1,c2,c3,c5(1/kN)2为正常数,表示Burckhardt轮胎模型特征参数,ks为正常数,表示Kamm修正系数,αi为车轮侧偏角,Fzi为车轮垂直荷载,公式(2)中αi分为前轴车轮侧偏角及后轴车轮侧偏角并分别表示为:式中δ为方向盘转角,公式(2)中Fzi分为前轴车轮垂直荷载及后轴车轮垂直荷载并分别表示为:式中g为重力加速度,将公式(2)(3)(4)代入公式(1),得到侧向动力学方程为:步骤二:根据期望横摆率、侧向速度以及侧倾角速度,设计滑模面和保证闭环系统稳定的滑模控制律表达式,采用滑模控制方法实现横摆率跟踪控制,设计滑模面为:设滑模控制律u=ueq+usgn,对公式(6)求导,使的控制律ueq为设计usgn为其中ε为大于0的常数,则步骤三:给出通过横摆率超调量与调节时间描述横摆响应动态性能的指标,将公式(10)代入公式(5),得到侧向横摆率跟踪控制的闭环方程为:通过优化横摆率的超调量以及调节时间来确定k值,优化问题1:其中,ts为闭环系统横摆率调节时间,σmax为闭环系统横摆率超调量,ρ1,ρ2为权值;步骤四:给出计算横摆率超调量与调节时间的数学表达式,在期望值处对公式(11)进行线性化,得到如下形式的线性化模型,其中a11,a12,a21,a22,c1,c2为与工作点有关的常数,由公式(13)可得闭环系统的特征根s1和s2分别为:其中ξ1,ξ2为与工作点有关的常数,公式(13)对应的单位阶跃响应γ(t)为:其中η1,η2,η3为与a11,a12,a21,a22,c1,c2,s1,s2和工作点有关的常数,根据公式(15)可得到闭环系统横摆率的峰值为:由公式(14)可知|s1|>>|s2|,故闭环系统横摆率的调节时间取决于s1,用2%稳态误差计算调节时间,可得:将公式(16)、(17)代入优化问题1中的性能指标,则优化问题1转化为优化问题2:步骤五:通过优化问题求解,得到使横摆动态最优的滑模控制律参数,根据公式(18),在不同车速、方向盘转角及对应的期望横摆率及侧向速度下,优化求解出对应的滑模面设计参数k。与现有技术相比,本专利技术的有益效果是:车辆横摆率表征车辆转向横摆速度,本专利技术通过设计滑模控制器并通过调节滑模面参数实现横摆率超调和调节时间的调整,改进现有横摆稳定控制的不足,给出可保证全工况下优化车辆横摆动态响应性能的滑模控制方法。附图说明图1是本专利技术的方向盘转角、车速与滑模面参数k之间的MAP。具体实施方式下面将结合本专利技术实施例中的附图,对本专利技术中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是专利技术的一部分实施例,而不是全部的实施例,基于本专利技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术保护的范围。本专利技术公开了一种全工况下优化车辆横摆动态性能的滑模控制方法,包括以下步骤:步骤一:建立能表征车辆横摆率以及侧向速度动态的二自由度车辆动力学方程,其中,m为车辆质量,Iz为车辆绕z轴转动惯量,lf为车辆质心到前轴距离,lr为车辆质心到后轴距离,l为车辆前轴到后轴距离,γ为车辆横摆率,vx为车辆纵向速度,vy为车辆侧向速度,Mz为车辆横摆扭矩,Fyi为侧向轮胎力,i=f,r表示前后轴,公式(1)中的侧向轮胎力采用Burckhardt轮胎模型表示,其中,c1,c2,c3,c5(1/kN)2为正常数,表示Burckhardt轮胎模型特征参数,ks为正常数,表示Kamm修正系数,αi为车轮侧偏角,Fzi为车轮垂直荷载,公式(2)中αi分为前轴车轮侧偏角及后轴车轮侧偏角并分别表示为:式中δ为方向盘转角,公式(2)中Fzi分为前轴车轮垂直荷载及后轴车轮垂直荷载并分别表示为:式中g为重力加速度,将公式(2)(3)(4)代入公式(1),得到侧向动力学方程为:其中,Fzi由公式(4)描述;步骤二:根据期望横摆率、侧向速度以及侧倾角速度,设计滑模面和保证闭环系统稳定的滑模控制律表达式,针对公式(5)描述的侧向动力学方程,采用滑模控制方法实现横摆率跟踪控制,设计滑模面为:设滑模控制律u=ueq+usgn,对公式(6)求导,使的控制律ueq为设计usgn为其中ε为大于0的常数,则为最后的滑模控制律;步骤三:给出通过横摆率超调量与调节时间描述横摆响应动态性能的指标,将公式(10)代入公式(5),得到侧向横摆率跟踪控制的闭环方程为:不同的滑模面参数k,对横摆率的超调和过渡过程时间有较大影响,针对此问题,通过优化横摆率的超调量以及调节时间来确定k值的方法,具体参照优化问题1所示,优化问题1:其中,ts为闭环系统横摆率调节时间,σmax为闭环系统横摆率超调量,ρ1,ρ2为权值;步骤四:给出计算横摆率超调量与调节时间的数学表达式,为获得优化问题1的解本文档来自技高网...
【技术保护点】
1.一种全工况下优化车辆横摆动态性能的滑模控制方法,其特征在于:所述方法包括以下步骤:/n步骤一:建立能表征车辆横摆率以及侧向速度动态的二自由度车辆动力学方程,/n
【技术特征摘要】
1.一种全工况下优化车辆横摆动态性能的滑模控制方法,其特征在于:所述方法包括以下步骤:
步骤一:建立能表征车辆横摆率以及侧向速度动态的二自由度车辆动力学方程,
其中,m为车辆质量,Iz为车辆绕z轴转动惯量,lf为车辆质心到前轴距离,lr为车辆质心到后轴距离,l为车辆前轴到后轴距离,γ为车辆横摆率,vx为车辆纵向速度,vy为车辆侧向速度,Mz为车辆横摆扭矩,Fyi为侧向轮胎力,i=f,r表示前后轴,
公式(1)中的侧向轮胎力采用Burckhardt轮胎模型表示,
其中,c1,c2,c3,c5(1/kN)2为正常数,表示Burckhardt轮胎模型特征参数,ks为正常数,表示Kamm修正系数,αi为车轮侧偏角,Fzi为车轮垂直荷载,
公式(2)中αi分为前轴车轮侧偏角及后轴车轮侧偏角并分别表示为:
式中δ为方向盘转角,
公式(2)中Fzi分为前轴车轮垂直荷载及后轴车轮垂直荷载并分别表示为:
式中g为重力加速度,
将公式(2)(3)(4)代入公式(1),得到侧向动力学方程为:
步骤二:根据期望横摆率、侧向速度以及侧倾角速度,设计滑模面和保证闭环系统稳定的滑模控制律表达式,采用滑模控制方法实现横摆率跟踪控制,设计滑模面为:
设滑模控制律u=ueq+usgn,对公式(6)求导,使的控制律ueq为
设计usgn为
其中ε为大于0的常数,
<...
【专利技术属性】
技术研发人员:周洪亮,贾凤娇,刘志远,
申请(专利权)人:哈尔滨工业大学,
类型:发明
国别省市:黑龙;23
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。