【技术实现步骤摘要】
基于像素分类的光学遥感图像多目标检测方法
本专利技术属于计算机视觉领域,涉及一种对遥感图像中多目标检测的方法,是一种能够从具有复杂背景的光学遥感图像中精确地检测到多种目标的方法。
技术介绍
目标检测是计算机视觉领域中一个重要的分支,近些年来,基于深度学习的目标检测算法发展迅速,但大部分经典的目标检测算法都是针对普通自然图像数据集的,如FasterR-CNN,Yolo,SSD,Retinanet等算法。而遥感图像的目标实例数量级更大。因为传感器的空间分辨率,拍摄的高度比较高,目标更丰富。在通用的目标检测数据集上,目标的位置通常由于重力以及拍摄位置而呈现出一种整体向下的状态,而遥感的数据集图像常常处于很极端的位置上,这是因为遥感拍摄的平台和视角不同。遥感图像中的目标可能在任意的位置出现,有一些目标常常有着比较夸张的长宽比,如舰船和桥梁。并且遥感数据集中许多小物体实例在遥感图像中是紧密排列在一起的,例如停车场中的车辆和港口的船舶。常用目标检测算法产生的都是正矩形框,而用矩形框去检测排列紧密且具有旋转角度的目标,目标与框之间 ...
【技术保护点】
1.一种基于像素分类的光学遥感图像多目标检测方法,其特征在于步骤如下:/n步骤1:对输入的光学遥感图像进行归一化操作,使得数据分布符合标准正态分布,然后将图像随机剪裁、缩放到同一尺寸;/n步骤2:构建网络模型,所述的网络模型包括特征提取层、特征融合层、预测层,特征提取层使用残差网络结构,并且加入了空洞卷积;特征融合层使用了ASPP网络,获得了不同感受野的特征,再结合通道注意力机制对不同通道的特征分配权重,之后对特征图进行上采样并将不同层的特征合并;预测层通过四组1*1的卷积核同时得到不同作用的特征图,分别为类别预测、目标框长宽预测、中心点偏移量预测以及旋转角度预测;/n步骤 ...
【技术特征摘要】
1.一种基于像素分类的光学遥感图像多目标检测方法,其特征在于步骤如下:
步骤1:对输入的光学遥感图像进行归一化操作,使得数据分布符合标准正态分布,然后将图像随机剪裁、缩放到同一尺寸;
步骤2:构建网络模型,所述的网络模型包括特征提取层、特征融合层、预测层,特征提取层使用残差网络结构,并且加入了空洞卷积;特征融合层使用了ASPP网络,获得了不同感受野的特征,再结合通道注意力机制对不同通道的特征分配权重,之后对特征图进行上采样并将不同层的特征合并;预测层通过四组1*1的卷积核同时得到不同作用的特征图,分别为类别预测、目标框长宽预测、中心点偏移量预测以及旋转角度预测;
步骤3:根据标注的光学遥感图像数据集,计算每个像素点的真实值Yxyc、目标框的宽高(w,h)、图像下采样到1/4之后中心点的偏移量目标框的旋转角度θ;
所述的Yxyc的计算式:
其中,x,y表示图像任意坐标,p表示原图中某个目标中心点的坐标;表示下采样后的坐标
所述的目标框的宽高(w,h)由数据标注文件直接读出;
所述的图像下采样到1/4之后中心点的偏移量包括偏移和纵向的偏移;
所述的目标框的旋转角度θ的计算过程:定义目标框的四个顶点分别是a,b,c,d,顺时针方向标记;首先找到纵坐标最大的一个点作为基准点,定为a点;之后,选择a点相邻的右边的顶点d,计算出这两个点之间边与纵轴构成的夹角θ;
步骤4:对于步骤2中特征提取部分使用在ImageNet数据集上预训练过的残差网络参数初始化,而特征融合部分以及预...
【专利技术属性】
技术研发人员:李映,张谷雨,刘凌毅,李西萍,
申请(专利权)人:西北工业大学,
类型:发明
国别省市:陕西;61
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。