【技术实现步骤摘要】
提取巡检关键部件点的方法及装置
本专利技术涉及电力检测领域,具体涉及一种提取巡检关键部件点的方法及装置。
技术介绍
电力系统有别于其他行业,维护不能随意中断生产,这就要在事故发生之前做好充分的预测—在事故发生之前解决故障,重点是输电线路的预防性巡检工作。随着电网智能化水平不断提高,无人机巡检被越来越多的采用。每一次巡检任务完成后都会产生大量的巡检图片。通常情况下输电线路精细化巡检对象包括:(1)导地线有无缺陷或异常;(2)线路金具有无缺陷或异常;(3)绝缘子及绝缘子串有无缺陷或异常;(4)附属设施有无缺陷或异常;(5)通道及交叉跨越有无缺陷或异常;(6)基础地质环境有无缺陷或异常;(7)杆塔本体运行状况。现有的巡检图像处理方式,大都是基于人工判读的方式来完成目标部件的标定和缺陷的分类,人工判读方式劳动强度大、工作效率低。另一方面,人工判读方式没有一个统一的评判标准作为依据、易受个人主观因素的影响,常常漏判或错判很多缺陷;使得巡检效果不佳,从而导致线路状态监管缺位,这些都使得输电线路巡检工作效果大打折扣,给输电 ...
【技术保护点】
1.一种提取巡检关键部件点的方法,其特征在于,包括以下步骤:/nS1.利用不同塔型的杆塔点云作为训练样本,根据不同塔型以及电压等级确定绝缘子高度;/nS2.根据所述绝缘子高度对杆塔点云进行垂直分层,将每层精细分类的点云作为深度学习的最小学习单元,对每个单元进行模型训练得到深度学习神经网络模型,利用神经网络模型对不同塔型的杆塔点云进行精细分类;/nS3.基于精细分类结果,将每个杆塔的杆塔点云利用模型构建方法进行单体化;/nS4.从单体化的各个模型中提取部件点的位置作为拍照点位。/n
【技术特征摘要】
1.一种提取巡检关键部件点的方法,其特征在于,包括以下步骤:
S1.利用不同塔型的杆塔点云作为训练样本,根据不同塔型以及电压等级确定绝缘子高度;
S2.根据所述绝缘子高度对杆塔点云进行垂直分层,将每层精细分类的点云作为深度学习的最小学习单元,对每个单元进行模型训练得到深度学习神经网络模型,利用神经网络模型对不同塔型的杆塔点云进行精细分类;
S3.基于精细分类结果,将每个杆塔的杆塔点云利用模型构建方法进行单体化;
S4.从单体化的各个模型中提取部件点的位置作为拍照点位。
2.根据权利要求1所述的提取巡检关键部件点的方法,其特征在于,步骤S1中,所述杆塔点云包括地线点云、导线点云、引流线点云、塔身点云和绝缘子点云。
3.根据权利要求2所述的提取巡检关键部件点的方法,其特征在于,在步骤S2中,所述对每个单元进行模型训练得到深度学习神经网络模型,利用神经网络模型对不同塔型的杆塔点云进行精细分类,具体包括如下操作步骤:
S21.根据杆塔位置,设置缓冲区,提取缓冲区内的点云进行精细分类;
S22.精细分类将点云作为输入数据,经过卷积、激活、池化计算,得到每个点的16维特征,利用增大类间向量的欧式距离减少类内向量间的欧式距离的方式,不断迭代训练模型,直至损失达到极小值后停止训练保存得到针对每个单元的深度学习神经网络模型;
S23.最后利用保存的深度学习神经网络模型对所有输入的点云计算高维特征,然后利用聚类算法对特征聚类完成对不同塔型的杆塔点云的点云精细分类。
4.根据权利要求3所述的提取巡检关键部件点的方法,其特征在于,在步骤S3中,基于精细分类结果,将每个杆塔的杆塔点云利用模型构建方法进行单体化,具体包括如下操作步骤:基于精细分...
【专利技术属性】
技术研发人员:郭彦明,
申请(专利权)人:北京数字绿土科技有限公司,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。