一种基于卷积神经网络的布料图像检索方法技术

技术编号:24091570 阅读:47 留言:0更新日期:2020-05-09 08:18
本发明专利技术公开了一种基于卷积神经网络的布料图像检索方法,包括:对纺织品面料图像进行预处理,采用双线性插值进行缩放图像,并进行归一化等预处理操作;设计卷积神经网络,作为分类器;利用分类的损失函数,以及梯度反向传播迭代训练该神经网络,获得特征提取器;对检索图以及面料库进行特征提取获得1024维特征向量;采用L2度量方法计算两个特征向量的相似度,并进行排序,实现纺织品面料图像检索的识别。本发明专利技术可以对目标形状进行轮廓空间位置特征的提取,实现存在遮挡目标的识别。并且该方法具有尺度不变性、旋转不变性和平移不变性,有效解决了不完整轮廓的识别问题,提高了目标识别和形状检索的准确率和鲁棒性。

A fabric image retrieval method based on convolutional neural network

【技术实现步骤摘要】
一种基于卷积神经网络的布料图像检索方法
本专利技术涉及图像检索领域,特别是涉及一种基于卷积神经网络的布料图像检索方法。
技术介绍
在巨量的纺织品面料品种中如何快速查找与来料样布最为相似的面料一直是面料供应商面临的一个挑战。传统的面料纺织品查找方法,一种是主要靠人眼去看,对于比较熟练的老师傅来说,可能还会依赖自己的记忆去加快查找。但是这种方法随着纺织品面料数量的增多,变得更加困难,且人的记忆具有衰退性和模糊性,容易经常出错,影响检索效率。另一种方案是基于传统的图像特征构建一个自动化的检索系统,比如图像的纹理特征,边缘特征,hash特征等。这些传统特征需要手工做实验去设定参数,而参数的设定并不能适合所有种类的纺织品面料图,主要原因是图像的种类过多,而参数量很少,无法去适应所有种类。而基于卷积神经网络的特征提取器,因为其具有成千上万的参数去控制模型的表达能力,在这种通用图像识别中具有明显的优势。且在我们的方法中该特征提取器是通过有监督的学习自动学出来的特征,更具有适应性。因此,针对该技术问题,为了能够在所有种类纺织品面料图上都能较高精本文档来自技高网...

【技术保护点】
1.一种基于卷积神经网络的布料图像检索方法,包括以下步骤:/nS1、对采集到的布料图像库进行缩放到固定尺寸300*300,并进行归类,作为训练样本集;/nS2、设计卷积神经网络分类模型;/nS3、利用softmax交叉熵损失函数,来计算网络输出值与类别标签的误差;/nS4、将上述误差对网络中的参数进行梯度反向传播,并多次迭代训练获取模型;/nS5、取模型的最后一个全连接层的作为最后网络输出节点,把输入到该节点的网络作为特征提取器;/nS6、利用训练好的网络特征提取器提取待检索的纺织品面料图的特征以及面料库的特征并存储为特征数据库;/nS7、带检索特征与布料库特征向量计算欧式距离均值,对距离进行...

【技术特征摘要】
1.一种基于卷积神经网络的布料图像检索方法,包括以下步骤:
S1、对采集到的布料图像库进行缩放到固定尺寸300*300,并进行归类,作为训练样本集;
S2、设计卷积神经网络分类模型;
S3、利用softmax交叉熵损失函数,来计算网络输出值与类别标签的误差;
S4、将上述误差对网络中的参数进行梯度反向传播,并多次迭代训练获取模型;
S5、取模型的最后一个全连接层的作为最后网络输出节点,把输入到该节点的网络作为特征提取器;
S6、利用训练好的网络特征提取器提取待检索的纺织品面料图的特征以及面料库的特征并存储为特征数据库;
S7、带检索特征与布料库特征向量计算欧式距离均值,对距离进行排序,获得检索结果。


2.根据权利要求1所述的方法,其特征在于,所述步骤S1具体包括:
S11、采用双线性插值算法对布料图像进行缩放到300*300大小;
S12、按照布料类别进行归类,归类类型为最小布料型号,构建4万张的训练集。
S13、对图像进行增强,这里首先对图像所有像素缩放到0-1之间,再对rgb通道进行0均值单位方差归一化操作,



再对图像进行水平和垂直方向翻转以及亮度增强操作。


3.根据权利要求1所述的方法,其特征在于,所述步骤S2具体包括:
S21、本发明的卷积神经网络采用多个卷积、池化、dropout和inceptionblock方式堆叠,最后用全连接层做为分类层;
S22、Inceptionblock块结构由多个卷积采用串+并联的方式构成,特征图先分别经过3个1*1卷积和一个最大池化进行降采样,再经过1个3*...

【专利技术属性】
技术研发人员:夏为民
申请(专利权)人:苏州正雄企业发展有限公司
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1