一种未知磁场的探测方法技术

技术编号:23320044 阅读:33 留言:0更新日期:2020-02-14 21:22
本发明专利技术公开了一种未知磁场的探测方法,矢量探测器从下到上依次是:自旋流生成层、磁性材料层、绝缘层、盖帽层;或者从上到下依次是自旋流生成层、第一铁磁层、非磁性材料层、第二铁磁层、钉扎层、盖帽层。自旋流生成层用于产生自旋极化电子,绝缘层用于使相邻的磁性材料层具有垂直磁各向异性。该矢量探测器抗干扰能力强,抗辐射能力强,使用寿命长,速度快,灵敏度高,可同时探测空间矢量微弱磁场的大小和方向;使用时利用反常霍尔效应或者隧道磁电阻效应测量电阻特性,计算得出空间微弱磁场的三个分量值,从而得到空间微弱磁场的大小和方向,操作简单,无需大量测量和反复测试,且可同时测得磁方向,测量精确度也更高。

A detection method of unknown magnetic field

【技术实现步骤摘要】
一种未知磁场的探测方法
本专利技术涉及空间磁场探测
,更具体地,涉及一种未知磁场的探测方法。
技术介绍
探测磁场的传感器可分为:能同时探测磁场强度和方向的矢量探测器,其工作原理主要有法拉第电磁感应定律、超导线圈的约瑟夫效应、超导体的迈斯纳效应、霍尔效应、磁阻效应等等;仅探测磁场强度不能分辨方向的标量探测器,其工作原理是利用某些电子或原子核自旋能级能量差随磁场而变(如塞曼效应)来实现测量。专利CN102024904A公开了一种高灵敏度金属霍尔传感器薄膜材料,其结构为:绝缘层/Pt1/[Co/Pt2]n/绝缘层。其反常霍尔效应曲线(R-H曲线)是线性的,可用做霍尔传感器。然而,该材料结构的传感器膜层太多,制备工艺复杂,只能测大小未知、方向已知的一维线性磁场,无法测量微弱磁场的大小。专利CN104600193A公开了一种超高反常霍尔灵敏度薄膜材料可测量测量范围为-4~+4Oe的微弱磁场,其结构由下往上依次为:第一Ta层、CoxFey层、金属氧化层、第二Ta层,原理也是利用了反常霍尔效应。然而,该材料结构的传感器只能测大小未知、方向已知的一维线性磁场,,测量时磁场必须垂直穿过器件。专利CN103904211A提供了一种基于垂直交换耦合的磁场探测器及其使用方法,其可测量空间磁场的方向和大小,其结构由下往上依次为:基片、底电极(Pt电极)、铁磁层([Co/Pt]n、[Co/Pd]n、[Co/Ni]n多层膜或者CoFeB)、非磁性层(反磁层或氧化层)和顶电极(Pt电极)。其使用方法为:(1)确定方向。在第一端点与第二端点之间通电流I,在第三端点与第四端点之间测霍尔电阻;转动磁场探测器,在某一角度下分别读取任意六个不同磁场大小下的电阻值。其中,三个正磁场下的霍尔电阻值R1、R2和R3;三个负磁场下的霍尔电阻值R4、R5和R6,并根据各霍尔电阻值之间的关系确定磁场方向。(2)确定磁场大小。a)将磁场探测器放置在方向确定的磁场中,使x轴平行于该磁场方向,将磁场探测器绕z轴旋转360°,测量并记录磁场探测器绕z轴旋转过程中的霍尔电阻值;根据磁场探测器绕z轴旋转的角度和测量得到的霍尔电阻值,绘制一条电阻-角度曲线;将磁场探测器放置在若干方向和大小已知的磁场中,根据磁场探测器绕z轴旋转的角度和测量得到的霍尔电阻值,绘制若干条标准电阻-角度曲线;将绘制的一条电阻-角度曲线与若干条标准电阻-角度曲线进行比对,找出与绘制的电阻-角度曲线相同的标准电阻-角度曲线,这条标准电阻-角度曲线对应的磁场大小即为该待确定磁场的大小。b)将带有铁电几片的磁场探测器置于未知大小的磁场中,让磁场方向垂直于磁场探测器的薄膜表面,在铁电基片上施加-10KV~10KV变化的电压,记录第三端点与第四端点之间的霍尔电阻发生转变时的电压值,此时的电压值对应的该垂直交换耦合体系的矫顽力即为磁场大小。然而,其利用的原理是反常霍尔效应和平面霍尔效应,在确定磁场的方向时,不仅需要转动传感器测6个电阻值,还需要进行大量微小的方向调节,使得6个电阻值相等,测量工作量巨大,时间太长,过程复杂;在确定磁场的大小时,需要测量大量的电阻-角度曲线,然后用未知磁场下的电阻-角度曲线去和大量曲线进行对比,从相似性的角度确定未知磁场,这其中不仅工作量巨大,并且还存在着不可估计的误差。综上所述,现有的磁探测器均无法实现矢量磁场大小和方向的简单快速测量,尤其是微弱磁场。
技术实现思路
针对现有技术的缺陷,本专利技术的目的在于解决现有的磁探测器均无法实现矢量磁场大小和方向的简单快速测量的技术问题。为实现上述目的,第一方面,本专利技术提供一种基于自旋轨道耦合的矢量探测器,所述矢量探测器从下到上依次是:自旋流生成层、磁性材料层、绝缘层、盖帽层,四者依次重叠排列;所述自旋流生成层为重金属或者拓扑绝缘体材料,用于产生自旋极化电子;所述磁性材料层为具有铁磁性可以实现垂直磁化的磁性材料;所述绝缘层用于使相邻的磁性材料层具有垂直磁各向异性。具体地,各层是从下到上依次排列的十字形HallBar结构。具体地,自旋流生成层为HallBar十字形结构,磁性材料层、绝缘层以及盖帽层的膜面为大小相同的多边形或椭圆形,并且依次重叠于自旋流生成层十字形状的中心位置。具体地,所述矢量探测器基于SOT效应,利用AHE效应来读取霍尔电阻。为实现上述目的,第二方面,本专利技术提供一种基于自旋轨道耦合的矢量探测器,所述矢量探测器从下到上依次是:自旋流生成层、第一铁磁层、非磁性材料层、第二铁磁层、钉扎层、盖帽层;所述自旋流生成层为重金属或者拓扑绝缘体材料,用于产生自旋极化电子;第一铁磁层、非磁性层、第二铁磁层、钉扎层以及盖帽层的膜面为大小相同的多边形或椭圆形;自旋流生成层的膜面大于其他层膜面且为十字形状的HallBar结构;自旋流生成层之上的各层薄膜依次重叠于自旋流生成层十字交叉部分的中心位置。具体地,所述矢量探测器基于SOT效应,利用TMR效应来读取磁性隧道结MTJ或者自旋阀结构的电阻。为实现上述目的,第三方面,本专利技术提供一种未知磁场的探测方法,其特征在于,所述探测方法基于上述的基于自旋轨道耦合的矢量探测器,所述方法包括以下步骤:S1.用大小和方向已知的磁场对矢量探测器进行标定,在所述矢量探测器施加电流,得到单独x磁场、单独y磁场、单独z磁场的R-H曲线;S2.将所述矢量探测器置于大小和方向未知的待测磁场中,在x方向上加与标定电流大小相同的正电流,在y方向上测量电压,用电压除以电流得到电阻值R1;S3.保持矢量探测器位置不变,在x方向上加与标定电流大小相同的负电流,在y方向上测量电压,用电压除以电流得到电阻值R2;S4.基于电阻值R1和R2,计算单独z方向磁场对电阻产生的贡献值RHz和单独x方向磁场对电阻产生的贡献值RHx;S5.将贡献值RHx、RHz分别代入单独x磁场和单独z磁场的R-H曲线中,得到未知磁场的x方向分量Hx和z方向分量Hz;S6.保持矢量探测器位置不变,在y方向分别加与标定电流大小相同的正负电流,x方向测电压,得到两个电阻值R3和R4;S7.基于电阻值R3和R4,计算单独y方向磁场对电阻产生的贡献值RHy;S8.将贡献值RHy代入单独y磁场的R-H曲线中,得到未知磁场的y方向分量Hy;S9.由三个分量Hx、Hy、Hz计算得到未知磁场的大小和方向;其中,所述自旋流生成层的四个端依次为器件的第一电极、第二电极、第三电极和第四电极,以第一电极指向第三电极的方向为x轴方向,以第二电极指向第四电极的方向为y轴方向,以垂直xy平面向上为z轴方向。具体地,步骤S1包括以下步骤:S101.将所述矢量探测器置于大小Hx变化、方向为x方向的磁场中,在x方向施加正电流,在y方向测量其电压,电压除以正电流得到电阻R,得到单独x磁场正电流下R-Hx曲线;S102.将所述矢量探测器置于大小Hx变化、方向为x方向的磁场中,在x方向施加相同大小的负电流,在y方向测量其电压,电压除以负电流得到电阻R,得到单独x磁本文档来自技高网
...

【技术保护点】
1.一种未知磁场的探测方法,其特征在于,所述探测方法适用于基于自旋轨道耦合的矢量探测器,所述方法包括以下步骤:/nS1.用大小和方向已知的磁场对矢量探测器进行标定,在所述矢量探测器施加电流,得到单独x磁场、单独y磁场、单独z磁场的R-H曲线;/nS2.将所述矢量探测器置于大小和方向未知的待测磁场中,在x方向上加与标定电流大小相同的正电流,在y方向上测量电压,用电压除以电流得到电阻值R

【技术特征摘要】
1.一种未知磁场的探测方法,其特征在于,所述探测方法适用于基于自旋轨道耦合的矢量探测器,所述方法包括以下步骤:
S1.用大小和方向已知的磁场对矢量探测器进行标定,在所述矢量探测器施加电流,得到单独x磁场、单独y磁场、单独z磁场的R-H曲线;
S2.将所述矢量探测器置于大小和方向未知的待测磁场中,在x方向上加与标定电流大小相同的正电流,在y方向上测量电压,用电压除以电流得到电阻值R1;
S3.保持矢量探测器位置不变,在x方向上加与标定电流大小相同的负电流,在y方向上测量电压,用电压除以电流得到电阻值R2;
S4.基于电阻值R1和R2,计算单独z方向磁场对电阻产生的贡献值RHz和单独x方向磁场对电阻产生的贡献值RHx;
S5.将贡献值RHx、RHz分别代入单独x磁场和单独z磁场的R-H曲线中,得到未知磁场的x方向分量Hx和z方向分量Hz;
S6.保持矢量探测器位置不变,在y方向分别加与标定电流大小相同的正负电流,x方向测电压,得到两个电阻值R3和R4;
S7.基于电阻值R3和R4,计算单独y方向磁场对电阻产生的贡献值RHy;
S8.将贡献值RHy代入单独y磁场的R-H曲线中,得到未知磁场的y方向分量Hy;
S9.由三个分量Hx、Hy、Hz计算得到未知磁场的大小和方向;
所述基于自旋轨道耦合的矢量探测器从下到上依次是:自旋流生成层、磁性材料层、绝缘层、盖帽层,四者依次重叠排列;
所述自旋流生成层为重金属或者拓扑绝缘体材料,用于产生自旋极化电子;所述磁性材料层为具有铁磁性可以实现垂直磁化的磁性材料;所述绝缘层用于使相邻的磁性材料层具有垂直磁各向异性;其中,所述自旋流生成层的四个端依次为器件的第一电极、第二电极、第三电极和第四电极,以第一电极指向第三电极的方向为x轴方向,以第二电极指向第四电极的方向为y轴方向,以垂直xy平面向上为z轴方向。


2.如权利要求1所述的探测方法,其特征在于,各层是从下到上依次排列的十字形HallBar结构。


3.如权利要求1所述的探测方法,其特征在于,自旋流生成层为HallBar十字形结构,磁性材料层、绝缘层以及盖帽层的膜面为大小相同的多边形或椭圆形,并且依次重叠于自旋流生成层十字形状的中心位置。


4.如权利要求1所述的探测方法,其特征在于,所述矢量探测器基于SOT效应,利用AHE效应来读取霍尔电阻。


5.一种未知磁场的探测方法,其特征在于,所述探测方法适用于基于自旋轨道耦合的矢量探测器,所述方法包括以下步骤:
S1.用大小和方向已知的磁场对矢量探测器进行标定,在所述矢量探测器施加电流,得到单独x磁场、单独y磁场、单独z磁场的R-H曲线;
S2.将所述矢量探测器置于大小和方向未知的待测磁场中,在x方向上加与标定电流大小相同的正电流,在y方向上测量电压,用电压除以电流得到电阻值R1;
S3.保持矢量探测器位置不变,在x方向上加与标定电流大小相同的负电流,在y方向上测量电压,用电压除以电流得到电阻值R2;
S4.基于电阻值R1和R2,计算单独z方向磁场对电阻产生的贡献值RHz和单独x方向磁场对电阻产生的贡献值RHx;
S5.将贡献值RHx、RHz分别代入单独x磁场和单独z磁场的R-H曲线中,得到未知磁场的x方向分量Hx和z方向分量Hz;
S6.保持矢量探测器位置不变,在y方向分别加与标定电流大小相同的正负电流,x方向测电压,得到两个电阻值R3和R4;
S7.基于电阻值R3和R4,计算单独y方向磁场对电阻产生的贡献值RHy;
S8.将贡献值RHy代入单独y磁场的R-H曲线中,得到未知磁场的y方向分量Hy;
S9.由三个分量Hx、Hy、Hz计算得到未知磁场的大小和方向;
所述基于自旋轨道耦合的...

【专利技术属性】
技术研发人员:游龙张帅李若凡
申请(专利权)人:华中科技大学
类型:发明
国别省市:湖北;42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1