一种抗冻水凝胶及其制备方法与应用技术

技术编号:23283139 阅读:60 留言:0更新日期:2020-02-08 14:59
本发明专利技术属于水凝胶技术领域,具体涉及一种抗冻水凝胶及其制备方法与应用。该抗冻水凝胶包括交联聚合物、水、纳米纤维和锂盐。首先将锂盐和交联聚合物单体溶解在纳米纤维悬浮液中,然后在冰浴条件下,将引发剂、交联剂、助剂与纳米纤维/交联聚合物单体/锂盐分散液混合均匀,进行自由基聚合反应即得。该抗冻水凝胶利用了纳米纤维和聚丙烯酰胺网络之间的协同作用改善了力学性能,通过直接添加氯化锂的方式,使锂离子稳定存在于凝胶网络中,赋予水凝胶低温下抗冻的特性,在‑80℃环境下可以任意拉伸、压缩。此外,可根据需求灵活调整氯化锂的加入量,制备不同相转变温度的抗冻水凝胶。该水凝胶的制备工艺简单,条件温和,便于实现大规模生产制备。

An antifreeze hydrogel and its preparation and Application

【技术实现步骤摘要】
一种抗冻水凝胶及其制备方法与应用
本专利技术属于水凝胶
,具体涉及一种抗冻水凝胶及其制备方法与应用。
技术介绍
水凝胶是一类含有大量水且具有三维网络结构的高分子聚合物。由于其特殊的软湿性特征,已被广泛应用于电子皮肤、柔性电子器件、驱动器和生物医用等领域。然而,传统的水凝胶在零度以下容易冻结,机械性能下降,严重限制了其在低温环境下的实际应用。近年来,已有研究将乙二醇、丙三醇等有机液体混合到水凝胶体系中,获得抗冻性能提高的有机水凝胶。但这类有机溶剂本身的毒性可能会造成环境污染,有损人体健康。此外,有机溶剂的参与往往会降低体系中的含水量,从而无法满足特定领域水凝胶的应用需求。另外有文献报道,通过将水凝胶浸渍于无机盐溶液中,以降低水凝胶的凝固点。但这种方法浸渍时间一般长达数天,大大延长了水凝胶的制备周期。因此,设计一种制备工艺简单、具有抗冻性的纯水体系的水凝胶,并使其在低温条件下保持优异的机械性能仍然是一个亟待解决的挑战。
技术实现思路
为了弥补现有技术的缺点和不足,本专利技术的首要目的在于提供一种抗冻水凝胶。本专利技术的另一目的在于提供上述抗冻水凝胶的制备方法。本专利技术的再一目的在于提供上述抗冻水凝胶的应用。为了实现上述目的,本专利技术采用的技术方案如下:一种抗冻水凝胶,包括交联聚合物、水、纳米纤维和锂盐。优选的,所述的交联聚合物由丙烯酰胺单体聚合而成。优选的,所述的纳米纤维为纤维素纳米纤维、纤维素纳米晶须、细菌纤维素、甲壳素纳米晶须、海藻酸钠纳米纤维或淀粉纳米晶须中的一种或两种以上。优选的,所述的锂盐为氯化锂。优选的,所述的抗冻水凝胶中,锂盐和水的质量比为0.1:1~0.5:1。优选的,所述的抗冻水凝胶中,交联聚合物和水的质量比为0.2:1~0.5:1。优选的,所述的抗冻水凝胶中,纳米纤维与水的质量比为0.01:1~0.1:1。本专利技术进一步提供上述抗冻水凝胶的制备方法,包括以下步骤:(1)将锂盐和交联聚合物单体溶解在纳米纤维悬浮液中,搅拌均匀后得到纳米纤维/交联聚合物单体/锂盐分散液;(2)在冰浴条件下,将引发剂、交联剂、助剂与纳米纤维/交联聚合物单体/锂盐分散液混合均匀,进行自由基聚合反应,即得到所述的抗冻水凝胶电解质。优选的,所述的引发剂为过硫酸铵、过硫酸钾、氧化苯甲酰、叔丁基过氧化氢、安息香乙醚或光引发剂2959。优选的,所述的交联剂为N,N-亚甲基双丙烯酰胺、双丙烯酸乙二醇酯、乙二醇二甲基丙烯酸酯或二乙烯基苯。优选的,所述的助剂为N,N,N′,N′-四甲基乙二胺、四甲基丙二胺或二甲基乙醇胺。优选的,所述的引发剂、交联剂、助剂与交联聚合物单体的质量比为(0.01~0.02):(0.0001~0.002):(0.001~0.01):1。本专利技术进一步提供上述抗冻水凝胶的应用,将所述的抗冻水凝胶用作超级电容器中的电解质。本专利技术与现有技术相比,具有如下的优点及效果:(1)本专利技术制备的抗冻水凝胶中纳米纤维和聚丙烯酰胺网络之间的协同作用改善了水凝胶的力学性能。并且通过直接添加氯化锂的方式,使锂离子稳定存在于凝胶网络中。借助氯化锂的特性赋予水凝胶低温下抗冻的特性,使其在低温条件下仍然保持水凝胶的柔软状态,具有高度可拉伸性和可压缩性,在-80℃环境下可以任意拉伸、压缩,仍然保留水凝胶的性质。(2)本专利技术的制备过程中,可以根据需求灵活地调整氯化锂的加入量,制备不同相转变温度的抗冻水凝胶。氯化锂与体系中水的质量比为0.1:1~0.5:1时,相转变温度随着氯化锂与体系中水的质量比的增大而降低。(3)本专利技术的制备工艺简单,条件温和,便于实现大规模生产制备。附图说明图1为实施例1制备的抗冻水凝胶动态热机械曲线。图2为实施例1制备的抗冻水凝胶在25℃下的拉伸应力-应变曲线。图3为实施例1制备的抗冻水凝胶在25℃下的压缩应力-应变曲线。图4为实施例1制备的抗冻水凝胶在-80℃下的拉伸和压缩实物图。图5为实施例2制备的抗冻水凝胶动态热机械曲线。图6为实施例2制备的抗冻水凝胶在25℃下的拉伸应力-应变曲线。图7为实施例2制备的抗冻水凝胶在25℃下的压缩应力-应变曲线。具体实施方式下面结合实施例及附图对本专利技术作进一步详细地描述,但本专利技术的实施方式不限于此。对于未特别注明的工艺参数,可参照常规技术进行。实施例1本实施例提供一种抗冻水凝胶及其制备方法。制备方法包括以下步骤:称取1.5g氯化锂于3mL的1wt%纤维素纳米纤维悬浮液中搅拌溶解;称取1.5g丙烯酰胺加入到上述纤维素纳米纤维/氯化锂悬浮液中;然后加入过硫酸铵、N,N′-亚甲基双丙烯酰胺和N,N,N′,N′-四甲基乙二胺,使悬浮液中过硫酸铵的浓度为1.4wt%、N,N′-亚甲基双丙烯酰胺的浓度为0.05wt%、N,N,N′,N′-四甲基乙二胺的浓度为0.6wt%,充分搅拌,通过自由基聚合形成水凝胶。本实施例中水凝胶的拉伸性能的测试方法:将制备的水凝胶裁成40mm×10mm×5mm的样条,使用材料试验机(INSTRON3300)进行拉伸测试,有效距离为20mm,拉伸速率为100mm/min。压缩性能的测试方法:将制备的水凝胶制成Φ15mm×15mm的圆柱,使用材料试验机(INSTRON5565)进行压缩测试,压缩速率为5mm/min。动态热机械测试方法:水凝胶试样(40mm×5mm×2mm)的动力学实验在动态热力学分析仪(NETZSCHDMA242)DMA上进行,采用压缩模式,温度测试范围-100~25℃,升温速率为5℃/min,振动频率为10Hz,记录储能模量和损耗因子与温度的关系曲线。图1为水凝胶储能模量和损耗因子与温度的关系曲线,可以看出储能模量随着温度的升高先缓慢下降,后急剧下降,最后趋于稳定的趋势;而损耗因子随着温度的升高下增大后减小,对应峰值的温度即为水凝胶的冰点,约为-80℃,进一步证明该水凝胶的抗冻性。图2和图3分别为本实施例制得的抗冻水凝胶拉伸和压缩应力-应变曲线。由图1可知,该水凝胶的最大拉伸应力为0.09MPa,拉伸率为731%。由图2可知,该水凝胶在80%的压缩应变下,应力达到0.59MPa。图4为水凝胶在-80℃下的拉伸和压缩实物图,说明水凝胶在-80℃环境下可以任意拉伸、压缩,仍然保留水凝胶的性质。实施例2本实施例提供一种抗冻水凝胶及其制备方法。制备方法包括以下步骤:称取0.9g氯化锂于3mL的1wt%纤维素纳米纤维悬浮液中搅拌溶解;称取1.5g丙烯酰胺加入到上述纤维素纳米纤维/氯化锂悬浮液中;然后加入过硫酸铵、N,N′-亚甲基双丙烯酰胺和N,N,N′,N′-四甲基乙二胺,使悬浮液中过硫酸铵的浓度为1.4wt%、N,N′-亚甲基双丙烯酰胺的浓度为0.05wt%、N,N,N′,N′-四甲基乙二胺的浓度为0.6wt%,充分本文档来自技高网...

【技术保护点】
1.一种抗冻水凝胶,其特征在于:包括交联聚合物、水、纳米纤维和锂盐。/n

【技术特征摘要】
1.一种抗冻水凝胶,其特征在于:包括交联聚合物、水、纳米纤维和锂盐。


2.根据权利要求1所述的抗冻水凝胶,其特征在于:所述的交联聚合物由丙烯酰胺单体聚合而成。


3.根据权利要求1所述的抗冻水凝胶,其特征在于:所述的纳米纤维为纤维素纳米纤维、纤维素纳米晶须、细菌纤维素、甲壳素纳米晶须、海藻酸钠纳米纤维或淀粉纳米晶须中的一种或两种以上。


4.根据权利要求1所述的抗冻水凝胶,其特征在于:所述的锂盐为氯化锂。


5.根据权利要求1所述的抗冻水凝胶,其特征在于:
所述的抗冻水凝胶中,锂盐和水的质量比为0.1:1~0.5:1;
所述的抗冻水凝胶中,交联聚合物和水的质量比为0.2:1~0.5:1;
所述的抗冻水凝胶中,纳米纤维与水的质量比为0.01:1~0.1:1。


6.权利要求1~5所述的抗冻水凝胶的制备方法,其特征在于,包括以下步骤:
(1)将锂盐和交联聚合物单体溶解在纳米纤维悬浮液中,搅拌均匀后得到纳米纤维/交联聚...

【专利技术属性】
技术研发人员:王小慧葛文娇孙润仓
申请(专利权)人:华南理工大学
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1