当前位置: 首页 > 专利查询>苏州大学专利>正文

一种基于声呐信号的物体分类方法、装置、设备及介质制造方法及图纸

技术编号:23213201 阅读:50 留言:0更新日期:2020-01-31 22:01
本申请公开了一种基于声呐信号的物体分类方法、装置、设备及介质,包括:根据声呐数据矩阵计算出拉普拉斯矩阵,并计算声呐数据矩阵的整体分值;分别从待选择特征集合中选择待测特征索引,利用增加与待测特征索引对应的待测信号特征之后的目标特征子集计算待测信号特征的Laplacian得分,并利用整体分值计算待测信号特征对声呐数据矩阵的局部保持度;从各局部保持度中选择出最小的目标局部保持度并确定出目标信号特征,删除待选择特征集合中与目标信号特征对应的目标特征索引,将目标特征索引按照预设次序设置于目标特征子集中;直到待选择特征集合中不存在特征索引;确定出目标特征子集,并利用目标特征子集识别各目标物体并进行分类。

An object classification method, device, equipment and medium based on sonar signal

【技术实现步骤摘要】
一种基于声呐信号的物体分类方法、装置、设备及介质
本专利技术涉及声呐识别领域,特别涉及一种基于声呐信号的物体分类方法、装置、设备及计算机可读存储介质。
技术介绍
随着电子技术和信息处理技术的发展和应用,水下平台和装备向智能化、隐身化、信息化方向发展,国际上已经将建立完备的水下目标特征数据库作为主动声纳探测识别的核心技术。利用CHIRP(CompressedHigh-IntensityRadarPulse)调频声纳技术,通过发射一组一组延长了的从低到高连续频率的合成压缩脉冲(探测信号)对目标物体进行探测,该探测信号在水中传播的路径上遇到目标物体后将被反射并被发射点接收,由于目标信息保存在被目标物体反射回来的声呐信号之中,所以可根据接收到的声呐信号来识别目标物体,对目标物体进行分类,如区分目标物体为金属圆筒或大致圆柱形岩石。由于获取到的声呐信号中存在噪声或者混响干扰,因此在根据声呐信号识别目标物体的过程中,需要先确定出用于识别目标物体的信号特征,排除不重要的信号特征对目标识别的干扰。现有技术中,一般通过迭代拉普拉斯得分(IterativeL本文档来自技高网...

【技术保护点】
1.一种基于声呐信号的物体分类方法,其特征在于,包括:/n将各目标物体分别返回的声呐信号转换为声呐数据矩阵,并根据各所述声呐信号的信号特征设置待选择特征集合;/n根据所述声呐数据矩阵计算出拉普拉斯矩阵,并根据所述拉普拉斯矩阵计算所述声呐数据矩阵的整体分值;/n分别从所述待选择特征集合中选择待测特征索引,利用增加与所述待测特征索引对应的待测信号特征之后的目标特征子集计算所述待测信号特征的Laplacian得分,并利用所述整体分值计算所述待测信号特征对所述声呐数据矩阵的局部保持度;/n从各所述局部保持度中选择出最小的目标局部保持度并确定出目标信号特征,删除所述待选择特征集合中与所述目标信号特征对应...

【技术特征摘要】
1.一种基于声呐信号的物体分类方法,其特征在于,包括:
将各目标物体分别返回的声呐信号转换为声呐数据矩阵,并根据各所述声呐信号的信号特征设置待选择特征集合;
根据所述声呐数据矩阵计算出拉普拉斯矩阵,并根据所述拉普拉斯矩阵计算所述声呐数据矩阵的整体分值;
分别从所述待选择特征集合中选择待测特征索引,利用增加与所述待测特征索引对应的待测信号特征之后的目标特征子集计算所述待测信号特征的Laplacian得分,并利用所述整体分值计算所述待测信号特征对所述声呐数据矩阵的局部保持度;
从各所述局部保持度中选择出最小的目标局部保持度并确定出目标信号特征,删除所述待选择特征集合中与所述目标信号特征对应的所述目标特征索引,将所述目标特征索引按照预设次序设置于所述目标特征子集中;
判断所述待选择特征集合中是否存在所述特征索引;
若是,则进入所述分别从所述待选择特征集合中选择待测特征索引,利用增加与所述待测特征索引对应的待测信号特征之后的目标特征子集计算所述待测信号特征的Laplacian得分,并计算所述待测信号特征对所述声呐数据矩阵的局部保持度的步骤;
若否,则确定出目标特征子集,并利用所述目标特征子集识别各所述目标物体并进行分类。


2.根据权利要求1所述的方法,其特征在于,所述根据所述声呐数据矩阵计算出拉普拉斯矩阵,并根据所述拉普拉斯矩阵计算所述声呐数据矩阵的整体分值的过程,具体包括:
根据所述声呐数据矩阵计算各所述声呐信号之间的距离,得出邻接矩阵;
利用所述邻接矩阵计算所述声呐数据矩阵的对角矩阵;
利用所述对角矩阵和所述邻接矩阵计算出所述拉普拉斯矩阵;
根据所述拉普拉斯矩阵和所述声呐数据矩阵计算出所述声呐数据矩阵的整体分值。


3.根据权利要求2所述的方法,其特征在于,所述根据所述声呐数据矩阵计算各所述声呐信号之间的距离,得出邻接矩阵的过程,具体包括:
设置近邻K值;
根据计算所述邻接矩阵中各元素的值;
其中,d(xi,xj)表示所述声呐数据矩阵中的声呐信号xi和声呐信号xj之间的欧几里得距离;σi表示局部尺度且σi=d(xi,xiK),xiK表示声呐信号xi的第K个近邻;σj表示局部尺度且σj=d(xj,xjK),xjK表示声呐信号xj的第K个...

【专利技术属性】
技术研发人员:张莉庞晴晴王邦军
申请(专利权)人:苏州大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1