结合像散法定位的非球面参数误差干涉测量方法及系统技术方案

技术编号:23097441 阅读:26 留言:0更新日期:2020-01-14 20:15
结合像散法定位的非球面参数误差干涉测量方法及系统,通过结合像散定位系统建立非球面参数误差干涉测量系统,不需要搭建复杂的激光差动共焦系统,避免了激光差动共焦系统装调误差对测量精度的影响,进而提高测量非球面的面型参数误差的测量精度,且能够实现非接触、全口径、精度高的测量,具有结构简单、装调方便的优点。

Interferometric method and system of aspheric parameter error with astigmatism positioning

【技术实现步骤摘要】
结合像散法定位的非球面参数误差干涉测量方法及系统
本专利技术涉及光学非球面测量的
,尤其涉及一种结合像散法定位的非球面参数误差干涉测量方法,以及结合像散法定位的非球面参数误差干涉测量系统。
技术介绍
非球面的面型参数包括顶点曲率半径和二次曲面常数。这两个参数共同决定了非球面的形状特征,其中,顶点曲率半径不仅影响非球面的轮廓,还决定了非球面的基本性质,进而影响光学系统的像差和成像质量;而二次曲面常数是非球面的分类依据。精确测量面型参数误差,对于光学非球面的加工和装调非常重要。通常情况下,利用接触法或非接触法可以获得被测面的面形轮廓,然后对面形轮廓直接进行曲率拟合,可以得到被测面的面型参数。面型参数的测量值与标称值的差值,即为该非球面的面型参数误差。干涉法是一种通用的光学非球面面形测量方法,而部分补偿干涉法具有结构简单、设计加工难度低的优点。在部分补偿干涉系统中,准直光经过补偿透镜后,其波前与非球面并不是完全吻合的,因此,反射光再次经过补偿透镜后,不再是准直光。当非准直反射光与参考准直光干涉时就会得到理想干涉条纹,实际条纹与理想干涉条纹的差异就反映了被测非球面的面形误差。部分补偿干涉法是一种相对测量方法,可以直接测得被测非球面的面形误差。但是,由于被测面和部分补偿透镜的相对位置无法确定,通过部分补偿干涉法无法直接获得被测非球面的面型参数误差,这是目前需要解决的一大难题。申请人拥有的已授权专利(申请号:201810933104.6,专利技术名称:结合激光差动共焦定位的非球面参数误差干涉测量方法)公开了一种解决这一难题的方法,其利用激光差动共焦定位系统求取补偿镜和被测镜之间距离。但是,这种方法所采用的激光差动共焦定位系统(该专利中未包括)一般包含:共焦镜头、分光镜和两套参数完全相同的针孔、显微物镜和探测器,对两路针孔和显微物镜的装调精度要求非常高,并且系统较为庞大。
技术实现思路
为克服现有技术的缺陷,本专利技术要解决的技术问题是提供了一种结合像散法定位的非球面参数误差干涉测量方法,其避免了在非球面参数误差干涉测量方法中需要使用差动共焦法进行被测非球面和补偿镜之间距离测量,从而简化了系统结构和装调过程,且能够实现非接触、全口径、速度快、精度高的测量,具有结构简单的优点。本专利技术的技术方案是:这种结合像散法定位的非球面参数误差干涉测量方法,其包括以下步骤:(1)获取被测非球面名义参数,利用光学设计软件设计部分补偿透镜P,得到设计后的部分补偿透镜P的设计参数,建立非球面参数误差干涉测量系统的干涉测量光路,得到名义最佳补偿距离d0,作为部分补偿镜P第二面到理想非球面顶点的距离;(2)根据步骤(1)得到的设计后部分补偿透镜P的设计参数,加工出部分补偿透镜P的实物,与参考平面镜、实际被测非球面共同搭建非球面参数误差干涉测量系统的干涉测量光路;根据干涉条纹最稀疏准则找到最佳补偿位置,此时部分补偿透镜P第二面到实际被测非球面顶点的距离为实际最佳补偿距离d1;(3)在参考平面镜和部分补偿透镜之间插入像散定位系统,建立结合像散法定位的非球面误差干涉测量系统;(4)调节像散定位系统的轴向位置,从参考平面镜端移动到部分补偿透镜端,过程中出现3次像散定位系统的四象限探测器探测到圆形光斑的位置,记录下四象限探测器第2次,第3次探测到圆形光斑的轴向位置,根据聚焦物镜和部分补偿镜的参数,计算得到实际最佳补偿距离d1,进而获得最佳补偿位置变化Δd=d1-d0;(5)测量被测非球面与理想非球面之间的面形变化,并计算面形变化S4分量的系数ΔD4;(6)根据联立的方程组(1)、(2),计算非球面的面型参数误差,实现对非球面的面型参数误差的测量,联立的方程组(1)、(2)的具体形式为:其中,R0是非球面的顶点曲率半径,ΔR是顶点曲率半径误差;K0是二次曲面常数,ΔK是二次曲面常数误差;SA是非球面的特征点到旋转对称轴的径向距离;±的符号选择原则为:凹非球面的符号选择为+,凸非球面的符号选择为–。本专利技术通过结合像散定位系统建立非球面参数误差干涉测量系统,不需要搭建复杂的激光差动共焦系统,避免了激光差动共焦系统装调误差对测量精度的影响,进而提高测量非球面的面型参数误差的测量精度,且能够实现非接触、全口径、精度高的测量,具有结构简单、装调方便的优点。还提供了一种结合像散法定位的非球面参数误差干涉测量系统,其包括:参考平面镜(1)、像散定位系统、部分补偿透镜P(2)、实际被测非球面(5)、实际干涉仪IR,像散定位系统包括:偏振分光镜(7)、四分之一波片(8)、聚焦物镜(9)、会聚透镜(10)、柱面镜(11)和四象限探测器(12);其中,实际干涉仪IR、参考平面镜(1)、部分补偿透镜P(2)和实际被测非球面(5)构成非球面参数误差干涉测量系统的干涉测量光路,根据实际干涉仪IR的干涉图对实际被测非球面(5)进行定位,当干涉条纹最稀疏的时候,确定实际被测非球面(5)和部分补偿透镜P(2)之间的距离为被测非球面(5)的最佳补偿位置d1(6);在参考平面镜(1)和部分补偿透镜P(2)之间插入像散定位系统后,平行线偏振激光经过参考平面镜(1)、偏振分光镜(7)、四分之一波片(8)后被聚焦物镜(9)会聚到部分补偿透镜P(2)的第二面,从部分补偿透镜P(2)的第二面反射的光透过聚焦物镜(9)、四分之一波片(8)后被偏振分光镜(7)反射,入射会聚透镜(10)、柱面镜(11)后,聚焦在四象限探测器(12)上,此时四象限探测器(12)探测到圆形光斑,记录此时像散定位系统的轴向位置L1;向部分补偿透镜P(2)端轴向移动像散定位系统,直到四象限探测器(12)再次探测到圆形光斑,记录此时像散定位系统的轴向位置L2;根据轴向位置L1、轴向位置L2、聚焦物镜和部分补偿镜的参数,计算得到实际最佳补偿距离d1。附图说明图1是根据本专利技术的结合像散法定位的非球面参数误差干涉测量方法的流程图。图2是设计的非球面参数误差干涉测量系统的干涉测量光路。图3是通过非球面参数误差干涉测量系统的干涉测量光路确定实际被测非球面最佳补偿位置的光路图。图4是通过像散定位系统确定部分补偿透镜第二面位置的光路图。图5是通过像散定位系统确定实际被测非球面位置的光路图。其中,1-参考平面镜、2-部分补偿透镜P、3-理想非球面、4-名义最佳补偿距离d0、5-实际被测非球面、6-实际最佳补偿距离d1、7-偏振分光棱镜、8-四分之一波片、9-聚焦物镜、10-会聚透镜、11-柱面镜、12-四象限探测器。具体实施方式申请人经过长时间思考和反复试验,通过像散定位系统取代已有专利的激光差动共焦定位系统。像散定位系统包括:偏振分光镜、四分之一波片、聚焦物镜、会聚透镜、柱面镜和四象限探测器,具有结构简单、装调方便的优点,而且能够避免了激光差动共焦系统装调误差对测量精度的影响。但是,这并不是简单的替代,而是要对整个非球面误差干涉测量方法和系统本文档来自技高网
...

【技术保护点】
1.结合像散法定位的非球面参数误差干涉测量方法,其特征在于:其包括以下步骤:/n(1)获取被测非球面名义参数,利用光学设计软件设计部分补偿透镜P,得到设计后的部分补偿透镜P的设计参数,建立非球面参数误差干涉测量系统的干涉测量光路,得到名义最佳补偿距离d

【技术特征摘要】
1.结合像散法定位的非球面参数误差干涉测量方法,其特征在于:其包括以下步骤:
(1)获取被测非球面名义参数,利用光学设计软件设计部分补偿透镜P,得到设计后的部分补偿透镜P的设计参数,建立非球面参数误差干涉测量系统的干涉测量光路,得到名义最佳补偿距离d0,作为部分补偿镜P第二面到理想非球面顶点的距离;
(2)根据步骤(1)得到的设计后部分补偿透镜P的设计参数,加工出部分补偿透镜P的实物,与参考平面镜、实际被测非球面共同搭建非球面参数误差干涉测量系统的干涉测量光路;根据干涉条纹最稀疏准则找到最佳补偿位置,此时部分补偿透镜P第二面到实际被测非球面顶点的距离为实际最佳补偿距离d1;
(3)在参考平面镜和部分补偿透镜之间插入像散定位系统,建立结合像散法定位的非球面误差干涉测量系统;
(4)调节像散定位系统的轴向位置,从参考平面镜端移动到部分补偿透镜端,过程中出现3次像散定位系统的四象限探测器探测到圆形光斑的位置,记录下四象限探测器第2次,第3次探测到圆形光斑的轴向位置,根据聚焦物镜和部分补偿镜的参数,计算得到实际最佳补偿距离d1,进而获得最佳补偿位置变化Δd=d1-d0;
(5)测量被测非球面与理想非球面之间的面形变化,并计算面形变化S4分量的系数ΔD4;
(6)根据联立的方程组(1)、(2),计算非球面的面型参数误差,实现对非球面的面型参数误差的测量,联立的方程组(1)、(2)的具体形式为:






其中,R0是非球面的顶点曲率半径,ΔR是顶点曲率半径误差;K0是二次曲面常数,ΔK是二次曲面常数误差;SA是非球面的特征点到旋转对称轴的径向距离;±的符号选择原则为:凹非球面的符号选择为+,凸非球面的符号选择为–。


2.根据权利要求1所述的结合像散法定位的非球面参数误差干涉测量方法,其特征在于:所述步骤(1)包括以下分步骤:
(1.1)获取被测非球面名义参数,其包括:被测非球面的口径、顶点曲率半径、二次曲面常数和高次非球面系数;
(1.2)利用获取被测非球面名义参数,结合光学设计软件设计部分补偿透镜P,得到设计后的部分补偿透镜P的设计参数,部分补偿透镜P的设计参数包括:部分补偿透镜P的第一面曲率半径、厚度、材料、第二面曲率半径和口径;
(1.3)结合光学设计软件构建非球面参数误差干涉测量系统模型:
光学设计软件中构建包含部分补偿透镜P的虚拟干涉仪IR,并确定理想非球面的最佳补偿位置,作为部分补偿透镜第二面到理想非球面顶点的轴向距离d0:



其中,d0是部分补偿透镜第二面到理想非球面顶点的轴向距离;LP是部分补偿透镜第二面到部分补偿透镜近轴焦点的距离,通过近轴光学公式进行确定;R0是非球面的顶点曲率半径,K0是二次曲面常数;A4是四...

【专利技术属性】
技术研发人员:郝群胡摇陶鑫宁悦文
申请(专利权)人:北京理工大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1