当前位置: 首页 > 专利查询>浙江大学专利>正文

超重力环境下材料定向凝固熔铸的高温加热系统技术方案

技术编号:22939819 阅读:54 留言:0更新日期:2019-12-27 15:41
本发明专利技术公开了一种超重力环境下材料定向凝固熔铸的高温加热系统。固定于超重力试验舱中,炉体承载体置于下炉体的下腔体隔热层底部,加热腔体置于炉体承载体上,加热腔体外分别和上炉体的上腔体隔热层、中炉体的中腔体隔热层、下炉体的下腔体隔热层之间填充有莫来石保温层;加热腔体分为上下部分,内部加工有螺旋状凹槽并装有发热体;坩埚支撑座内部有一个用于定向凝固冷却气体通入的通气管道。本发明专利技术配合超重力环境,可加热高转速条件下材料定向凝固熔铸样品,解决了高速旋转状态下定向凝固熔铸加热的关键难题,填补了国内技术行业的空白,且装备简单、操作方便。

【技术实现步骤摘要】
超重力环境下材料定向凝固熔铸的高温加热系统
本专利技术涉及高温加热领域,尤其涉及一种适用于在超重力环境下给材料定向凝固熔铸的样品高温加热。
技术介绍
高压涡轮工作叶片作为航空发动机和燃气轮机热端部件关键组成部分之一,服役时长期工作在高温、高压、高转速、交变负载等耦合加载条件下,是发动机中工作条件最恶劣的转动部件,其使用可靠性直接影响整机性能。在高温合金的发展过程中,工艺对高温合金的发展起着很大的推动作用。通常为了提高高温合金的综合力学性能,采用两种途径:其一是加入大量合金化元素,通过合理的热处理工艺使之产生固溶强化、沉淀强化及晶界强化等,从而保证高温合金具有从室温到高温的良好强度、表明稳定性和较好的塑性;其二是从凝固工艺入手,采用定向凝固工艺,制备晶界平行于主应力轴从而消除有害横向晶界的柱状晶高温合金或制备消除所有晶界的单晶高温合金。定向及单晶叶片由于消除横向晶界或完全消除晶界,晶体沿[001]特定方向生长,提高初熔温度及固溶处理窗口温度,增加γ数量并细化,大幅度提高了性能,提高使用温度。目前,几乎所有先进航空发动机均采用单晶高温合金。工业上广泛应用的快速凝固法制备单晶合金,其温度梯度只能达到100K/cm左右,凝固速率很低,导致凝固组织粗大,偏析严重,致使材料的性能千里没有得到充分发挥。微重力下的晶体生长,由于重力加速度减小而有效的抑制了重力造成的无规则热质对流,从而获得溶质分布高度均匀的晶体,但由于成本太高,无法工业化。单晶合金可以通过在超重力环境下进行制备,但现有技术缺少了超重力环境下实现定向凝固的加热系统。
技术实现思路
本专利技术需要解决的是针对上述超重力、高温试验条件下材料定向凝固熔铸过程中样品加热难的问题,高转速-高温耦合环境下材料定向凝固熔铸,提供一种装配简单、使用方便、安全系数高,且可用于超重力工况的高温加热系统,使得超重力下制备单晶合金具有了可能。本专利技术采用的技术方案是:本专利技术的高温加热系统固定于超重力试验舱中,所述的高温加热系统包括从上到下依次布置连接的上炉体、中炉体、下炉体以及莫来石保温层、上加热腔外体、下加热腔外体、上加热炉管、下加热炉管、坩埚支撑座和发热体;上炉体主要由上隔热盖、上腔体外壳、上腔体中壳、上腔体隔热层、上腔体下固定盖组成,上腔体外壳、上腔体中壳、上腔体隔热层分别从外到内安装形成上炉三层结构,上隔热盖和上腔体下固定盖分别安装于上炉三层结构的上端和下端使得上炉三层结构固定连接,上腔体外壳和上腔体中壳之间以及上腔体中壳和上腔体隔热层之间均有间隙作为空气隔热层;中炉体主要由中隔热盖、中腔体外壳、中腔体中壳、中腔体隔热层、中腔体下固定盖组成,中腔体外壳、中腔体中壳、中腔体隔热层分别从外到内安装形成中炉三层结构,中隔热盖和中腔体下固定盖分别安装于中炉三层结构的上端和下端使得中炉三层结构固定连接,中腔体外壳和中腔体中壳之间以及中腔体中壳和中腔体隔热层之间均有间隙作为空气隔热层;上炉体的上腔体下固定盖和中炉体的中隔热盖之间固定连接;下炉体主要由下隔热盖、下腔体外壳、下腔体中壳、下腔体隔热层、下腔体下固定盖组成,下腔体外壳、下腔体中壳、下腔体隔热层分别从外到内安装形成下炉三层结构,下隔热盖和下腔体下固定盖分别安装于下炉三层结构的上端和下端使得下炉三层结构固定连接,下腔体外壳和下腔体中壳之间以及下腔体中壳和下腔体隔热层之间均有间隙作为空气隔热层;中炉体的中腔体下固定盖和下炉体的下隔热盖之间固定连接。坩埚支撑座置于下炉体的下腔体隔热层底部,加热腔体置于坩埚支撑座上,加热腔体包括上加热腔外体、下加热腔外体、上加热炉管和下加热炉管,上加热腔外体和下加热腔外体均为套筒结构,上加热腔外体和下加热腔外体分别位于上下同轴固定对接,上加热炉管、下加热炉管分别套装于上加热腔外体、下加热腔外体中,上加热腔外体、下加热腔外体在上炉体的上腔体隔热层、中炉体的中腔体隔热层、下炉体的下腔体隔热层之间填充有莫来石保温层;上加热炉管和下加热炉管的外壁均加工有螺旋状凹槽,螺旋状凹槽装有螺旋状的发热体,发热体产生的热量均匀辐射到上加热炉管和下加热炉管组成的加热炉管,在加热炉管中央形成高温区;坩埚支撑座内部有一个通气管道,通气管道用于定向凝固的冷却气体通入,通气管道上端贯穿出坩埚支撑座顶面作为出口并连通到下加热炉管内部,通气管道下端贯穿出坩埚支撑座最底部后作为入口。所述的上加热炉管和下加热炉管内部的坩埚支撑座之上安装有坩埚和冷却系统,定向凝固试验的冷却气体通过通气管道通入坩埚底部,通过对坩埚底部冷却,形成一个沿超重力方向的温度梯度而进行定向凝固,并且通过调控冷却气体的通入流量和发热体产生的温度,调控沿超重力方向的温度梯度分布。工作过程中发热体产生热量,通过辐射加热上加热炉管和下加热炉管,在加热炉管中央形成高温区,通过改变不同高度位置的螺旋状凹槽螺距进而改变不同高度位置的发热体在加热炉管间距,配合坩埚支撑座通气管道通入的冷却气体温度和流量,从坩埚底部开始冷却,形成一个沿超重力方向的温度梯度。所述的上加热炉管和下加热炉管采用高强度、低导热系数的陶瓷制作。所述的高温加热系统置于离心机的超重力环境中。所述的超重力实验舱内还安装有承力架、信号采集器和布线架,高温加热系统的上加热炉管和下加热炉管内安装待定向凝固的材料试样,并设置有温度传感器,温度传感器连接信号采集器,信号采集器输出的导线通过布线架与弱信号导电滑环连接,再与地面测控中心连接;高温加热系统设置有一路强电独立回路,一路强电独立回路控制加热内部不同高度位置的发热体进行高温加热,将地面一个强电独立回路通过离心离心机主轴导电滑环接入超重力实验舱的布线架;高温加热系统设置有一路冷却气体回路,一路冷却气体独立回路控制通入的冷却气体流量,将地面一个冷却气体独立回路通过离心离心机主轴导电滑环接入超重力实验舱的冷却气体管路支架和排气管。本专利技术实现了超重力环境下实现定向凝固的加热系统,使得在超重力下能进行晶体生长,通过增大重力加速度而加强浮力对流,当浮力对流增强到一定程度时,就转化为层流状态,即重新层流化,同样抑制了无规则的热质对流。在加速旋转过程中造成液相强迫对流,由于极大的改变热质传输过程而引起了界面形貌的显著变化,导致糊状区宽度显著减小。液相快速流动引起界面前沿液相中的温度梯度极大的提高,非常有利于液相溶质的均匀混合和材料的平界面生长,枝晶生长形态发生显著的变化,由原来具有明显主轴的枝晶变为无明显主轴的穗状晶,穗状晶具有细密的显微组织。本专利技术的有益效果是:本专利技术可在超重力环境下对需定向凝固熔铸的材料样品进行高温加热,可实现在离心载荷-热载荷耦合条件下材料定向凝固熔铸和加热,可有效解决超重力、高温试验条件下材料定向凝固熔铸加热的问题,具有结构简单,操作方案且安全系数较高的优点。本专利技术配合超重力环境,可加热高转速条件下材料定向凝固熔铸样品,例如高温合金的定向及单晶晶体生长,解决了高速旋转状态下材料定向凝固熔铸加热的关键难题,填补了国内技术行业的空白,且装备简单、操作方便。本专利技术适合1g本文档来自技高网
...

【技术保护点】
1.一种超重力环境下材料定向凝固熔铸的高温加热系统,其特征在于:/n所述的高温加热系统固定于超重力试验舱中,所述的高温加热系统包括从上到下依次布置连接的上炉体、中炉体、下炉体以及莫来石保温层(16)、上加热腔外体(17)、下加热腔外体(18)、上加热炉管(19)、下加热炉管(20)、坩埚支撑座(21)和发热体(22);上炉体主要由上隔热盖(1)、上腔体外壳(2)、上腔体中壳(3)、上腔体隔热层(4)、上腔体下固定盖(5)组成,上腔体外壳(2)、上腔体中壳(3)、上腔体隔热层(4)分别从外到内安装形成上炉三层结构,上隔热盖(1)和上腔体下固定盖(5)分别安装于上炉三层结构的上端和下端使得上炉三层结构固定连接,上腔体外壳(2)和上腔体中壳(3)之间以及上腔体中壳(3)和上腔体隔热层(4)之间均有间隙作为空气隔热层;中炉体主要由中隔热盖(6)、中腔体外壳(7)、中腔体中壳(8)、中腔体隔热层(9)、中腔体下固定盖(10)组成,中腔体外壳(7)、中腔体中壳(8)、中腔体隔热层(9)分别从外到内安装形成中炉三层结构,中隔热盖(6)和中腔体下固定盖(10)分别安装于中炉三层结构的上端和下端使得中炉三层结构固定连接,中腔体外壳(7)和中腔体中壳(8)之间以及中腔体中壳(8)和中腔体隔热层(9)之间均有间隙作为空气隔热层;上炉体的上腔体下固定盖(5)和中炉体的中隔热盖(6)之间固定连接;下炉体主要由下隔热盖(11)、下腔体外壳(12)、下腔体中壳(13)、下腔体隔热层(14)、下腔体下固定盖(15)组成,下腔体外壳(12)、下腔体中壳(13)、下腔体隔热层(14)分别从外到内安装形成下炉三层结构,下隔热盖(11)和下腔体下固定盖(15)分别安装于下炉三层结构的上端和下端使得下炉三层结构固定连接,下腔体外壳(12)和下腔体中壳(13)之间以及下腔体中壳(13)和下腔体隔热层(14)之间均有间隙作为空气隔热层;中炉体的中腔体下固定盖(10)和下炉体的下隔热盖(11)之间固定连接;/n坩埚支撑座(21)置于下炉体的下腔体隔热层(14)底部,加热腔体置于坩埚支撑座(21)上,加热腔体包括上加热腔外体(17)、下加热腔外体(18)、上加热炉管(19)和下加热炉管(20),上加热腔外体(17)和下加热腔外体(18)均为套筒结构,上加热腔外体(17)和下加热腔外体(18)分别位于上下同轴固定对接,上加热炉管(19)、下加热炉管(20)分别套装于上加热腔外体(17)、下加热腔外体(18)中,上加热腔外体(17)、下加热腔外体(18)在上炉体的上腔体隔热层(4)、中炉体的中腔体隔热层(9)、下炉体的下腔体隔热层(14)之间填充有莫来石保温层(16);上加热炉管(19)和下加热炉管(20)的外壁均加工有螺旋状凹槽(22-1),螺旋状凹槽(22-1)装有螺旋状的发热体(22),发热体(22)产生的热量均匀辐射到上加热炉管(19)和下加热炉管(20)组成的加热炉管,在加热炉管中央形成高温区;坩埚支撑座(21)内部有一个通气管道(21-1),通气管道(21-1)用于定向凝固的冷却气体通入,通气管道(21-1)上端贯穿出坩埚支撑座(21)顶面作为出口并连通到下加热炉管(20)内部,通气管道(21-1)下端贯穿出坩埚支撑座(21)最底部后作为入口。/n...

【技术特征摘要】
1.一种超重力环境下材料定向凝固熔铸的高温加热系统,其特征在于:
所述的高温加热系统固定于超重力试验舱中,所述的高温加热系统包括从上到下依次布置连接的上炉体、中炉体、下炉体以及莫来石保温层(16)、上加热腔外体(17)、下加热腔外体(18)、上加热炉管(19)、下加热炉管(20)、坩埚支撑座(21)和发热体(22);上炉体主要由上隔热盖(1)、上腔体外壳(2)、上腔体中壳(3)、上腔体隔热层(4)、上腔体下固定盖(5)组成,上腔体外壳(2)、上腔体中壳(3)、上腔体隔热层(4)分别从外到内安装形成上炉三层结构,上隔热盖(1)和上腔体下固定盖(5)分别安装于上炉三层结构的上端和下端使得上炉三层结构固定连接,上腔体外壳(2)和上腔体中壳(3)之间以及上腔体中壳(3)和上腔体隔热层(4)之间均有间隙作为空气隔热层;中炉体主要由中隔热盖(6)、中腔体外壳(7)、中腔体中壳(8)、中腔体隔热层(9)、中腔体下固定盖(10)组成,中腔体外壳(7)、中腔体中壳(8)、中腔体隔热层(9)分别从外到内安装形成中炉三层结构,中隔热盖(6)和中腔体下固定盖(10)分别安装于中炉三层结构的上端和下端使得中炉三层结构固定连接,中腔体外壳(7)和中腔体中壳(8)之间以及中腔体中壳(8)和中腔体隔热层(9)之间均有间隙作为空气隔热层;上炉体的上腔体下固定盖(5)和中炉体的中隔热盖(6)之间固定连接;下炉体主要由下隔热盖(11)、下腔体外壳(12)、下腔体中壳(13)、下腔体隔热层(14)、下腔体下固定盖(15)组成,下腔体外壳(12)、下腔体中壳(13)、下腔体隔热层(14)分别从外到内安装形成下炉三层结构,下隔热盖(11)和下腔体下固定盖(15)分别安装于下炉三层结构的上端和下端使得下炉三层结构固定连接,下腔体外壳(12)和下腔体中壳(13)之间以及下腔体中壳(13)和下腔体隔热层(14)之间均有间隙作为空气隔热层;中炉体的中腔体下固定盖(10)和下炉体的下隔热盖(11)之间固定连接;
坩埚支撑座(21)置于下炉体的下腔体隔热层(14)底部,加热腔体置于坩埚支撑座(21)上,加热腔体包括上加热腔外体(17)、下加热腔外体(18)、上加热炉管(19)和下加热炉管(20),上加热腔外体(17)和下加热腔外体(18)均为套筒结构,上加热腔外体(17)和下加热腔外体(18)分别位于上下同轴固定对接,上加热炉管(19)、下加热炉管(20)分别套装于上加热腔外体(17)、下加热腔外体(18)中,上加热腔外体(17)、下加热腔外体(18)在上炉体的上腔体隔热层(4)、中炉体的中腔体隔热层(9)、下炉体的下腔体隔热层(14)之间填充有莫来石保温层(16);上加热炉管(19)和下加热炉管(20)的外壁均加工有螺旋状凹槽(22-1),螺旋状凹槽...

【专利技术属性】
技术研发人员:韦华谢亚丹王江伟林伟岸张泽陈云敏
申请(专利权)人:浙江大学
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1