一种钛合金电磁冲击强化的方法技术

技术编号:22878573 阅读:30 留言:0更新日期:2019-12-21 05:26
本发明专利技术涉及一种钛合金电磁冲击强化的方法。包括以下步骤:步骤1、在待处理钛合金材料上取样,通过金相显微镜观察其初生α相的取向;步骤2、统计材料金相中初生α相的体积百分比及其尺寸分布情况,根据其初生α相的含量及其尺寸分布情况确定电磁冲击处理参数;步骤3、将待处理钛合金材料装夹到电脉冲处理设备上,在惰性气体保护下,沿着钛合金材料的初生α相的伸长方向通脉冲电流,进行电磁冲击处理,脉冲电流的频率为0~100Hz,电流密度为20~600A/mm

A method of strengthening titanium alloy by electromagnetic impact

【技术实现步骤摘要】
一种钛合金电磁冲击强化的方法
本专利技术涉及一种钛合金电磁冲击强化的方法。
技术介绍
与铝合金、镁合金和钢等材料相比,钛合金具有比强度高、抗腐蚀性能好、抗疲劳性能好、热导率和线膨胀系数小等优点,其中α+β型钛合金相对于α型和β型,具有优良的综合力学性能,可以在500℃以下长期使用,且具有较高的高温强度、塑性、抗蠕变能力和抗腐蚀性能,广泛应用于制造航空发动机叶片、轮盘、轴及飞机结构件、对接螺栓等关键部件。其微观组织主要包括:双态组织、魏氏组织、篮网组织和等轴组织。其中等轴组织的特点是在初生α相基体上分布着片层状的β相组织,同其他组织相比,其具有良好的断面收缩率、抗缺口敏感性和热稳定性,但其断裂韧性和抗裂纹扩展能力稍差。然而钛合金等轴组织的性能受其初生α相的体积份数、形貌和晶粒尺寸影响较大。通常细小且趋于球状均匀分布的初生α相具有强化效果,有助于提升其综合力学能力。现有钛合金获得等轴组织的方法一般是将材料在双相区或者近β区进行变形热处理可以获得等轴组织。其初生α相的形貌和晶粒大小主要取决于变形量的大小、变形的速率和热处理温度等因素。实际工件在加工完成后所获得的初生α相多数情况并非“等轴”状态,而是初生α相会沿着变形的方向伸长,形成大量长条形的初生α相。另外,传统的热处理工艺耗能大、处理时间长,且无法将此类初生α相再进一步球化。公告号为CN103898428B的专利技术专利提供了一种将近α钛合金混合组织中片状α的重复退火球化方法,该方法是在将近α钛合金加热到相变温度以下50~60℃,保温一定时间后空冷退火,且重复多次后可以看到片状α相分被分割成短棒状,使钛合金组织发生球化。该方法只能将片状α球化,初生α未发生明显变化,在球化的同时片状α相有所长大,并未起到使组织细化的目的,而且该方法处理时间长、能耗较大。在公告号为CN106756692B的专利技术专利提供了一种提高TC4钛合金片层组织球化率的双道次锻造方法。该方法通过将TC4钛合金加热到800~900℃后通过双道次锻造后在500~600℃温度下进行6~12h退火热处理的方法,实现在较小的变形量时使TC4钛合金中的片层组织球化的目的。该方法有效地提高了TC4钛合金片层组织球化率,但是其工艺流程相对复杂、能耗大、生产效率低,而且其针对的对象仅为TC4钛合金中的片层状的组织。
技术实现思路
本专利技术提供了一种钛合金电磁冲击强化的方法,将钛合金中的初生α相进一步球化,且使其晶粒变得更细小。该方法节能、环保、用时少,而且可以达到传统变形加热处理达不到的效果。本专利技术采用的技术方案如下:一种钛合金电磁冲击强化的方法,包括以下步骤:步骤1、在待处理钛合金材料上取样,通过金相显微镜观察其初生α相的取向;步骤2、统计材料金相中初生α相的体积百分比及其尺寸分布情况,根据其初生α相的含量及其尺寸分布情况确定电磁冲击处理参数;步骤3、将待处理钛合金材料装夹到电脉冲处理设备上,在惰性气体保护下,沿着钛合金材料的初生α相的伸长方向通脉冲电流,进行电磁冲击处理,脉冲电流的频率为0~100Hz,电流密度为20~600A/mm2,脉冲数为1~100个,处理完成后将材料冷却至室温。按上述方案,用真空泵将体系抽真空,然后通入惰性气体,进行电磁脉冲处理。按上述方案,所述的真空度为4000~6000Pa;所述的惰性气体为氩气。由于钛合金在600℃以上时能与空气中的氧气发生剧烈反应,所以在处理的时候抽真空、通氩气可防止其处理的过程中材料的氧化。按上述方案,用保温棉将待处理钛合金材料包裹后,进行电磁冲击处理。在脉冲电磁冲击处理的时候温升非常快,如果放置在空气中,散热较快,虽然达到相变温度,但是由于维持时间太短很难发生明显相变。用保温棉调控温度更有助于达到更佳的处理效果。按上述方案,脉冲处理后将材料放置在保温棉中冷却至室温。按上述方案,所述的电磁冲击强化处理为循环电脉冲处理。其工艺流程如图2所示。重复多次的目的是为了让局部的α相更加充分的转化成β相。按上述方案,所述的重复次数为3次以上,一般为3-6次,具体根据工艺要求确定。按上述方案,脉冲电流方向与初生α相的伸长方向夹角小于15°。在电磁冲击处理的时候应注意电流的方向,沿着钛合金材料的初生α相的伸长方向通脉冲电流,特别当电流方向与初生α相的伸长方向夹角小于15°时,才能起到较好的球化和细化组织的效果。这主要是由于双态组织中的α相的电导率大于β相的电导率,当电流沿着初生α相伸长方向流过时,组织中的初生α相的“狭窄”区形成电流集中,导致局部高温,此处的α相转化成β相,从而沿初生α相的长度方向将将其截断,使原本伸长的初生α相变为球形,且由原本的一个变成多个形成更为细小的α相。由于α+β型钛合金的材料状态和组成元素差异,导致其初生α相的体积百分比及其尺寸分布都不相同。初生α相的体积百分比及其尺寸分布情况会影响到电磁冲击处理时的工艺参数。本专利技术可根据初生α相的体积百分比及其尺寸分布情况选择电磁冲击处理时的工艺参数,一般来说,当其他条件一定时,初生α相的体积百分比越高,所用的处理电流密度越小、脉冲数约多;当其他条件一定时,初生α相的尺寸越大,需要用的处理脉冲电流的频率越低、处理次数越多。本专利技术的有益效果:本专利技术方法能使其初生的α相进一步球化且细化且细化,达到良好的处理效果。从而可进一步提升材料综合力学性能。附图说明图1电磁冲击处理装置结构示意图;图2α+β型钛合金电脉冲快速球化的方法;图3处理前α+β型钛合金组织金相图;图4电处理后α+β型钛合金组织金相图。具体实施方式以下列举了几个具体的实例对本专利技术专利的进行详细的说明:实例1在此实例中选用的材料的TC11钛合金其具体实施步骤如下所示:步骤1、首先在待处理材料上切取6mm×6mm×20mm的试样,将其所有面都打磨、抛光并且腐蚀,然后在金相显微镜下观察其金相组织。从图中可以确定初生α相“长轴”方向,由此可以确定脉冲电磁冲击处理时的电流方向。步骤2、用image-pro软件统计材料金相中初生α相的体积百分比为43%;初生α相的平均尺寸为12.3μm×7.8μm。步骤3、将待处理TC11钛合金材料用保温棉将包裹住,将需要通电的两端面露出,在本实例中为左右两端面。然后将材料装夹到图1所述的脉冲电磁冲击处理设备上,使材料的左、右端面与设备的上、下极头接触良好。步骤4、用真空泵将氩气保护箱抽真空,其真空度为6000Pa;步骤5、通入氩气,以保护处理时材料不发生氧化;步骤6、按照试样的尺寸确定相应的电流大小为5000A~8000A,脉冲电流的频率为10Hz~40Hz,电磁冲击处理脉冲数为3~8个。通电磁冲击处理后,将试样保持在原位,等其冷却到室温。步骤7、重复步骤6的操作六次。完成后将材料取出,放到金相显微镜下观察其微观组织,如图3和图4所示,原本大块的初生α相出现破碎现象,而且本文档来自技高网
...

【技术保护点】
1.一种钛合金电磁冲击强化的方法,其特征在于:包括以下步骤:/n步骤1、在待处理钛合金材料上取样,通过金相显微镜观察其初生α相的取向;/n步骤2、统计材料金相中初生α相的体积百分比及其尺寸分布情况,根据其初生α相的含量及其尺寸分布情况确定电磁冲击处理参数;/n步骤3、将待处理钛合金材料装夹到电脉冲处理设备上,在惰性气体保护下,沿着钛合金材料的初生α相的伸长方向通脉冲电流,进行电磁冲击处理,脉冲电流的频率为0~100Hz,电流密度为20~600A/mm

【技术特征摘要】
1.一种钛合金电磁冲击强化的方法,其特征在于:包括以下步骤:
步骤1、在待处理钛合金材料上取样,通过金相显微镜观察其初生α相的取向;
步骤2、统计材料金相中初生α相的体积百分比及其尺寸分布情况,根据其初生α相的含量及其尺寸分布情况确定电磁冲击处理参数;
步骤3、将待处理钛合金材料装夹到电脉冲处理设备上,在惰性气体保护下,沿着钛合金材料的初生α相的伸长方向通脉冲电流,进行电磁冲击处理,脉冲电流的频率为0~100Hz,电流密度为20~600A/mm2,脉冲数为1~100个,处理完成后将材料冷却至室温。


2.根据权利要求1所述的钛合金电磁冲击强化的方法,其特征在于:用真空泵将体系抽真空,然后通入惰性气体,进行电磁脉冲处理。


3.根据权利要求1所述的钛合金电磁冲击强化的方法,其特征在于:所述的真空度为4000~600...

【专利技术属性】
技术研发人员:宋燕利吴文林华林王中奇宁世儒
申请(专利权)人:武汉理工大学
类型:发明
国别省市:湖北;42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1