当前位置: 首页 > 专利查询>东南大学专利>正文

一种多模混合动力汽车模式切换图的正向设计方法技术

技术编号:21820668 阅读:35 留言:0更新日期:2019-08-10 14:16
本发明专利技术提供了一种多模混合动力汽车模式切换图的正向设计方法,从能量效率、模式切换能量损耗与最大输出扭矩等多个角度对模式切换图进行讨论与分析,并从中总结出一套多模混合动力汽车模式切换图的正向设计方法。不仅能够提高车辆经济性,还能提高模式切换的平顺性,降低由模式切换引起的冲击与能量损耗。

A Forward Design Method of Mode Switching Diagram for Multimode Hybrid Electric Vehicles

【技术实现步骤摘要】
一种多模混合动力汽车模式切换图的正向设计方法
本专利技术属于混合动力汽车
,具体涉及一种多模混合动力汽车模式切换图的正向设计方法。
技术介绍
目前,针对混合动力汽车核心技术的研究大多集中在整车稳态能量管理策略上,用于解决能量的分配以优化效率,而对动态模式切换过程中不同动力源输出转矩的协调控制问题研究较少。混合动力汽车由发动机和驱动电机两种动力源联合驱动的结构特点决定了对应不同的工况,车辆将处于不同的驱动模式,从而在不同工况下进行转换时需要进行模式切换。多模混合动力汽车的模式切换过程与自动变速器的挡位切换过程相似,均是通过离合器的接合与分离实现,多个离合器动态协调动作可以实现快速且平顺的模式切换与挡位切换。但模式切换与挡位切换不同的是,多模混合动力汽车的动力耦合装置中存在多个惯性部件,若模式切换时,离合器接合前后主动部分与从动部分的存在转速差,则极有可能对车辆输出轴造成较大的冲击。此时,若转速差较大,还会引起较大的能量损耗。以上问题在城市工况下显得更为突出,在此工况下,车辆的平均时速较低,怠速工况以及制动较多,起停较为频繁,因此混合动力汽车的模式切换次数会更加频繁,如果不对这一过程进行针对性的协调控制,将会严重降低车辆驾驶性能以及乘车舒适性。
技术实现思路
为解决上述问题,本专利技术公开了一种多模混合动力汽车模式切换图的正向设计方法,不仅能够提高车辆的经济性,还能提高模式切换的平顺性,降低由模式切换引起的冲击与能量损耗。为达到上述目的,本专利技术的技术方案如下:一种多模混合动力汽车模式切换图的正向设计方法,包括以下步骤:步骤1:首先进行模式切换图分析,主要包括能量效率,模式切换能量损耗,最大输出扭矩;步骤2:在电量损耗模式下,通过计算各纯电动模式的整车能量效率,得到多模混合动力汽车模式切换图。步骤3:在电量保持模式下,通过如下的设计方法:1)计算各混合动力驱动模式的能量效率,并求取各工作点的最优工作效率模式,将其作为初始模式切换图。2)计算所有结构模式的最大输出扭矩,并将该最大输出扭矩曲线作为模式切换图的边界;3)计算各结构模式间的能量变化,通过对比分析以修正上一步骤中得到的模式切换图,得到多模混合动力汽车模式切换图。进一步的,步骤1所述能量效率通过计算多模混合动力汽车所有混合驱动模式的GNEF效率,并绘制效率分布图。所述GNEF(GlobalNormalizedEfficiencyFactor)效率为全局归一化效率因子。进一步的,步骤1所述模式切换能量损耗为离合器接合时两端若存在较大的转速差,可能会造成较大的能量损失。发动机的动能因为离合器的摩擦而转化为热能。进一步的,步骤1所述最大输出扭矩中,模式切换图的设计除受能量效率与模式切换的能量损耗约束以外,其边界还受各自模式的最大输出扭矩约束。进一步的,步骤2所述电量损耗模式为仅使用纯电动模式。所述电量损耗模式下,根据下式计算各纯电动模式的整车能量效率。其中PEVin为系统的输入功率,即电池功率PBatt,而PEVloss为系统的损失功率,即为电机损失功率PMotorloss。进一步的,步骤3所述电量保持模式为仅在低速低扭矩需求区域使用纯电动模式。进一步的,步骤3所述各混合动力驱动模式的能量效率为其中,Pe_1+Pe_2+Pe_3是发动机的输出功率,Pfuel是对应于发动机喷射的燃料的功率,ηe_max,ηMG1_max,andηMG2_max分别是发动机、MG1与MG2的最大效率。Pbatt是电池提供的驱动车辆的功率,除此之外,μ是一个与电池是否输出功率有关的判断因子,其μ=0如果电池的输出功率小于0,μ=1当电池的输出功率为零或大于零。进一步的,步骤3所述最大扭矩的计算通过求解下式中的最大化问题,以求解每个模式的最大输出扭矩,其中PBatt是电池功率,v是车辆车速。MaximumTout(v,Te,TMG1,TMG2)Subjectto:进一步的,步骤3所述结构模式包括单电机纯电动模式,纯电机纯电动模式,输入型功率分流模式,固定传动比并联模式复合型功率分流模式。进一步的,步骤3所述各结构模式间能量变化通过下式计算。式中,ω*0与ω*f分别代表模式切换的前后结构模式最佳工作效率时,对应的发动机、MG1、MG2转速。本专利技术的有益效果是:1、在保证系统模式切换平顺性,模式切换速度,减少模式切换能量损耗的同时提高整车的经济性。2、不仅能够提高车辆经济性,还能提高模式切换的平顺性,降低由模式切换引起的冲击与能量损耗。附图说明图1是本专利技术多模混合动力汽车模式切换图的正向设计方法基本流程图。图2是输入型功率分流驱动模式的GNEF效率图。图3是固定传动比并联驱动模式的GNEF效率图。图4是复合型功率分流驱动模式的GNEF效率图。图5是混合动力汽车各结构模式最大输出扭矩曲线。图6是本专利技术多模混合动力汽车模式切换图的正向设计方法设计得到的多模混合动力汽车模式切换图。具体实施方式下面结合附图和具体实施方式,进一步阐明本专利技术,应理解下述具体实施方式仅用于说明本专利技术而不用于限制本专利技术的范围。本专利技术所述的一种多模混合动力汽车模式切换图的正向设计方法,分为电量耗尽模式与电量保持模式下的模式切换图设计,其
技术实现思路
为:步骤1:首先进行模式切换图分析,主要包括能量效率,模式切换能量损耗,最大输出扭矩。计算多模混合动力汽车混合驱动模式的GNEF效率,并绘制效率分布图,如图2、3、4所示。输入型功率分流模式(模式III)在0到100km/h区间与较大的输出需求扭矩区间内都保持较高(0.95以上)的归一化效率,复合型功率分流模式(模式V)在中高速(大于80km/h)低扭矩(小于400Nm)区域具有较高的能量效率;固定传动比并联模式(模式IV)在中车速与中低扭矩区域具有最高的能量效率,但高能量效率面积明显较功率分流模式小。模式切换能量损耗中,离合器接合时两端若存在较大的转速差,可能会造成较大的能量损失,发动机动能因为离合器的摩擦而转化为热能。在不同的工作环境下,每个结构模式均有其各自的最优工作状态(发动机、MG1、MG2的转速与扭矩),则离合器在完成接合与分离动作后,需要控制系统各部件使它们快速达到核定的最佳效率对应的转速,以使系统运行在最佳效率点,这一过程也需要付出较大的能量(燃料或者电能)。综上,引入一个能量损耗因子ETransit,以评估模式切换过程的系统机械能变化,这在一定程度上能够反映系统在模式切换的合理性,如下式。式中,Ie代表发动机惯量IMG1代表MG1电动机/发电机惯量,IMG2代表MG2电动机/发电机惯量,ω*0与ω*f分别代表模式切换的前后结构模式最佳工作效率时,对应的发动机、MG1、MG2转速。计算最大扭矩,通过求解下式中的最大化问题以求解每个模式的最大输出扭矩,其中PBatt是电池功率,v是车辆车速。MaximumTout(v,Te,TMG1,TMG2)Subjectto:绘制混合动力汽车各结构模式的输出扭矩,如图3。步骤2:在电量损耗模式下,根据下式可以计算各纯电动模式的整车能量效率。其中PEVin为系统的输入功率,即电池功率PBatt,而PEVloss为系统的损失功率,即为电机损失功率PMotorloss。步骤3:在电量保持模式下,通过上述模式切换图的分析总结出如本文档来自技高网
...

【技术保护点】
1.一种多模混合动力汽车模式切换图的正向设计方法,其特征在于:分为电量损耗模式与电量保持模式下的设计,包括以下步骤:步骤1:首先进行模式切换图分析,主要包括能量效率,模式切换能量损耗,最大输出扭矩;步骤2:在电量损耗模式下,通过计算各纯电动模式的整车能量效率,得多模混合动力汽车模式切换图;步骤3:在电量保持模式下,通过如下方法:1)计算各混合动力驱动模式的能量效率,并求取各工作点的最优工作效率模式,将其作为初始模式切换图;2)计算所有结构模式的最大输出扭矩,并将该最大输出扭矩曲线作为模式切换图的边界;3)计算各结构模式间的能量变化,通过对比分析以修正上一步骤中得到的模式切换图,得到多模混合动力汽车模式切换图。

【技术特征摘要】
1.一种多模混合动力汽车模式切换图的正向设计方法,其特征在于:分为电量损耗模式与电量保持模式下的设计,包括以下步骤:步骤1:首先进行模式切换图分析,主要包括能量效率,模式切换能量损耗,最大输出扭矩;步骤2:在电量损耗模式下,通过计算各纯电动模式的整车能量效率,得多模混合动力汽车模式切换图;步骤3:在电量保持模式下,通过如下方法:1)计算各混合动力驱动模式的能量效率,并求取各工作点的最优工作效率模式,将其作为初始模式切换图;2)计算所有结构模式的最大输出扭矩,并将该最大输出扭矩曲线作为模式切换图的边界;3)计算各结构模式间的能量变化,通过对比分析以修正上一步骤中得到的模式切换图,得到多模混合动力汽车模式切换图。2.根据权利要求1中多模混合动力汽车模式切换图的正向设计方法,其特征在于:步骤1所述能量效率通过计算多模混合动力汽车所有混合驱动模式的GNEF效率,并绘制效率分布图。3.根据权利要求2中多模混合动力汽车模式切换图的正向设计方法,其特征在于:所述GNEF效率为全局归一化效率因子。4.根据权利要求1中多模混合动力汽车模式切换图的正向设计方法,其特征在于:步骤1所述模式切换能量损耗,离合器接合时两端若存在较大的转速差,会造成较大的能量损失;发动机的动能因为离合器的摩擦而转化为热能;在不同的工作环境下,每个结构模式均有其各自的最优工作状态,则离合器在完成接合与分离动作后,需要控制系统各部件使它们快速达到核定的最佳效率对应的转速,以使系统运行在最佳效率点,这一过程也需要付出较大的能量;综上,再此引入一个能量损耗因子ETransit,以评估模式切换过程的系统机械能变化,这在一定程度上能够反映系统在模式切换的合理性,如下式:式中,Ie代表发动机惯量IMG1代表MG1电动机/发电机惯量,IMG2代表MG2电动机/发电机惯量,ω*0与ω*f分别代表模式切换的前后结构模式最佳工作效率时,对应的发动机、MG1、MG2转速,MG为发动机/电机。5.根据权利要求1中多模混合动力汽车模式切换图的正向设计方法,其特征在于...

【专利技术属性】
技术研发人员:庄伟超罗凯殷国栋叶建伟耿可可黄泽豪刘好唐卓人
申请(专利权)人:东南大学
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1