用于体外轴突应力学响应机制研究的多通道差速牵拉装置制造方法及图纸

技术编号:20883235 阅读:24 留言:0更新日期:2019-04-17 13:24
本发明专利技术提供了一种用于体外轴突应力学响应机制研究的多通道差速牵拉装置,包括培养与牵拉控制系统和机械装置,其中所述培养与牵拉控制系统包括细胞培养箱、上位机、控制器和驱动电机;所述机械装置包括第一联轴器、齿轮轴、齿轮轴座、第二联轴器、第一丝杠螺母直线滑台、第二丝杠螺母直线滑台、细胞牵拉生长装置、装置支撑架、底座;所述第一丝杠螺母直线滑台与所述第二丝杠螺母直线滑台的丝杠旋向不同。该装置能够适于实现多样本数的神经轴突牵拉生长实验,并且能够提供灵活的测试牵拉速度。

【技术实现步骤摘要】
用于体外轴突应力学响应机制研究的多通道差速牵拉装置
本专利技术涉及生物医学实验领域,特别涉及一种用于体外轴突应力学响应机制研究的多通道差速牵拉装置。
技术介绍
随着世界各国经济水平的发展,脊髓损伤发生率呈现逐年增高的趋势。在发达国家,脊髓损伤的发生率大约为13.3-45.9人/百万人/年。在中国,每年新增约6万脊髓损伤患者。目前临床治疗脊髓损伤方法主要包括手术、药物治疗和长期运动康复等。然而,神经组织的大量损失及再生功能的衰竭,使得当前治疗手段非常有限。目前临床上的神经修复术主要为自体神经移植和细胞移植,可以促进被破坏或受损害神经再生修补和重塑、重建神经解剖投射通路和环路、调控和改善神经信号传导、最终实现神经功能修复。但是,两种方法各自存在相应的隐患:自体神经由于来源受限、直径细小等原因根本无法满足修复大量损坏神经的需求,而且被截取后的神经会永久的失去功能,并有形成神经瘤的风险;细胞通过损伤靶点途径移植可能对局部脑组织、脊髓组织造成受损,且多靶点移植时损伤更重,通过血液途径移植受血液内成分及体内代谢因素影响较大,还受血脑屏障的影响,细胞通过脑脊液运输,贴附在受伤处软膜的表面,除了可能渗入神经根外,还可能广泛渗入脑组织。中国专利技术专利201410403385.6公开了一种神经轴突牵拉生长装置,由培养与牵拉控制系统和机械装置两部分组成。控制器连接并驱动步进电机旋转,带动联轴器一端的滚珠丝杆直线滑台产生位移,细胞牵拉生长装置固定在装置支撑架上,通过固定在直线滑台上的牵拉连接块而间接牵拉神经轴突。但该装置中只能接两组牵拉装置,且牵拉块的速度都是一致的,神经样本数量不够充足,不能很好的测试牵拉速度对神经轴突生长的影响,另外步进式的牵拉加速度大,对神经易造成损伤。
技术实现思路
本专利技术的目的是提供一种能够适于实现多样本数的神经轴突牵拉生长装置,并且能够提供灵活的测试牵拉速度。本专利技术的技术方案如下。一种神经轴突牵拉生长装置,包括培养与牵拉控制系统和机械装置,其中:所述培养与牵拉控制系统包括细胞培养箱、上位机、控制器和驱动电机;所述机械装置包括第一联轴器、齿轮轴、齿轮轴座、第二联轴器、第一丝杠螺母直线滑台、第二丝杠螺母直线滑台、细胞牵拉生长装置、装置支撑架、底座;所述第一丝杠螺母直线滑台与所述第二丝杠螺母直线滑台的丝杠旋向不同。优选地,所述细胞培养箱设有一个与外界相通的孔道,用于通过所述驱动电机的数据线连接控制器。优选地,所述孔道位于所述细胞培养箱后侧,所述孔道与数据线连接处采用硅胶密封。优选地,所述上位机能够控制牵拉过程的参数,包括细胞牵拉的位移、速度、持续时间中的一个或多个。优选地,所述齿轮轴有多个,分别与所述第一丝杠螺母直线滑台和第二丝杠螺母直线滑台的每一个相对应;所述第一联轴器将所述驱动电机与所述齿轮轴的一个相连接;所述第二联轴器将每个齿轮轴与相对应的丝杠螺母直线滑台相连接。优选地,所述第一丝杠螺母直线滑台和第二丝杠螺母直线滑台分别有多个,并且交替排列,相邻的两个丝杠螺母滑台相应的齿轮轴相互啮合。优选地,所述第一丝杠螺母直线滑台和第二丝杠螺母直线滑台的每个丝杠具有不同的螺距,由此各个螺母能够产生不同的位移。优选地,所述控制器能够接收所述上位机发出的指令,从而驱动所述驱动电机旋转;所述驱动电机能够驱动多个齿轮轴旋转,进而带动丝杠螺母直线滑台产生线性位移。优选地,所述细胞牵拉生长装置有多个,分别与所述第一丝杠螺母直线滑台和第二丝杠螺母直线滑台的每一个相对应;所述细胞牵拉生长装置设于所述装置支撑架上,连同所述第一和第二丝杠螺母直线滑台、所述齿轮轴座固定在底座上,所述底座放置于细胞培养箱内;所述细胞牵拉生长装置的每一个包括培养座、盖子、一体化牵拉件、牵拉膜和底膜;所述一体化牵拉块与杆能够由丝杠螺母直线滑台的螺母带动引起牵拉膜的移动,从而牵拉神经轴突。优选地,所述培养座为一体化长方形结构;所述一体化牵拉件包括牵拉块部分和牵拉杆部分;所述牵拉块部分位于所述培养座中部,牵拉杆部分位于培养座的端部中央;所述底膜粘附于所述培养座底部槽内;所述盖子置于培养座两侧及上表面的凹槽上并固定。本专利技术的优点在于:(1)本专利技术构建了一个多通道、差速神经轴突牵拉装置,可以在同一培养环境下同时控制多个独立的牵拉装置,并实现等差数列式的轴突生长的长度、速度,方便实验对照,既可验证机械牵拉刺激神经生长的可行性,也能测试牵拉速度对神经轴突生长的影响。(2)本专利技术可以通过力传感器采集牵拉应力数据,分析应力大小对神经轴突生长的影响,创建出体外培育功能完善的神经组织的最佳条件,用于神经损伤修复,且为实现体内移植牵拉装置进行神经修复奠定技术基调。附图说明图1为本专利技术的一种神经轴突牵拉生长装置结构示意图;图2为本专利技术中细胞牵拉生长装置机械结构图;图3为本专利技术中细胞牵拉生长装置无盖子俯视图;图4为本专利技术中一体化牵拉块与杆的侧视图;图5为本专利技术中细胞牵拉生长装置牵拉原理图;图6为本专利技术中轴突牵拉生长控制结构图。具体实施方式下面将结合本专利技术实施例中的附图,对本专利技术实施例中的技术方案进行详细、清楚地介绍。此处所描述的具体实施例仅用以解释本专利技术,并不限定本专利技术。如图1所示,本专利技术涉及的一种用于体外轴突应力学响应机制研究的多通道、差速牵拉装置,主要由培养与牵拉控制系统和机械装置两部分组成。培养与牵拉控制系统包括细胞培养箱1、上位机2、控制器3和直流电机4,机械装置包括连接直流电机的第一联轴器5、齿轮轴6、连接齿轮轴的第二联轴器7、左旋丝杠螺母直线滑台8、右旋丝杠螺母直线滑台9、细胞牵拉生长装置10、装置支撑架11、底座12。所述细胞培养箱1后侧设有一个与外界相通的孔道,所述直流电机4的数据线通过孔道连接控制器3,孔道与数据线连接处采用硅胶密封。所述细胞培养箱1为密封结构,可提供细胞生长所需的二氧化碳、温度和湿度环境。在一优选的实施方式中,所述细胞培养箱1被设置为保证37℃温度、95%相对湿度和5%二氧化碳的培养条件,这样的环境可以给细胞生长提供最佳的二氧化碳、温度和湿度环境。所述上位机2通过编程可控制牵拉过程的参数,包括细胞牵拉的速度、位移、持续时间。所述控制器3接收上位机2的控制指令,从而驱动直流电机4旋转,采用直流电机是为了平稳持续的输出,步进电机每一次转动会产生过大的瞬时加速度,容易出现过大的牵拉力导致轴突断裂。所述左旋丝杠螺母直线滑台8、右旋丝杠螺母直线滑台9分别有多个,并且优选为具有相等的数量。所述连接直流电机的第一联轴器5、齿轮轴6、连接齿轮轴的第二联轴器7、细胞牵拉生长装置10分别有多个,并且分别与左旋丝杠螺母直线滑台8、右旋丝杠螺母直线滑台9的每一个相对应。所述直流电机4带动其中一个连接直流电机的第一联轴器5一端的齿轮轴6转动,由此各个齿轮轴6分别带动连接齿轮轴的第二联轴器7一端的左旋丝杠螺母直线滑台8和右旋丝杠螺母直线滑台9产生位移。由于齿轮轴间的传动,相邻两个齿轮轴的转向不一样,因此设计旋向不同的丝杠。因为每个丝杠的螺距不一样,所以螺母发生的位移不一样,从而通过固定在直线滑台螺母上的一体化牵拉块与杆14间接牵拉神经轴突,且牵拉的位移和速度不一样。为防止机械牵拉位移过大从而使轴突断裂,每天牵拉的时间为4-5分钟,牵拉的位移为0.5mm左右。相应地,在本文档来自技高网
...

【技术保护点】
1.一种神经轴突牵拉生长装置,包括培养与牵拉控制系统和机械装置,其中:所述培养与牵拉控制系统包括细胞培养箱、上位机、控制器和驱动电机;所述机械装置包括第一联轴器、齿轮轴、齿轮轴座、第二联轴器、第一丝杠螺母直线滑台、第二丝杠螺母直线滑台、细胞牵拉生长装置、装置支撑架、底座;其特征在于,所述第一丝杠螺母直线滑台与所述第二丝杠螺母直线滑台的丝杠旋向不同。

【技术特征摘要】
2018.12.12 CN 20181152070841.一种神经轴突牵拉生长装置,包括培养与牵拉控制系统和机械装置,其中:所述培养与牵拉控制系统包括细胞培养箱、上位机、控制器和驱动电机;所述机械装置包括第一联轴器、齿轮轴、齿轮轴座、第二联轴器、第一丝杠螺母直线滑台、第二丝杠螺母直线滑台、细胞牵拉生长装置、装置支撑架、底座;其特征在于,所述第一丝杠螺母直线滑台与所述第二丝杠螺母直线滑台的丝杠旋向不同。2.根据权利要求1所述的神经轴突牵拉生长装置,其特征在于,所述细胞培养箱设有一个与外界相通的孔道,用于通过所述驱动电机的数据线连接控制器。3.根据权利要求2所述的神经轴突牵拉生长装置,其特征在于,所述孔道位于所述细胞培养箱后侧,所述孔道与数据线连接处采用硅胶密封。4.根据权利要求1所述的神经轴突牵拉生长装置,其特征在于,所述上位机能够控制牵拉过程的参数,包括细胞牵拉的位移、速度、持续时间中的一个或多个。5.根据权利要求1所述的神经轴突牵拉生长装置,其特征在于,所述齿轮轴有多个,分别与所述第一丝杠螺母直线滑台和第二丝杠螺母直线滑台的每一个相对应;所述第一联轴器将所述驱动电机与所述齿轮轴的一个相连接;所述第二联轴器将每个齿轮轴与相对应的丝杠螺母直线滑台相连接。6.根据权利要求5所述的神经轴突牵拉生长装置,其特征在于,所述第一丝杠螺母直...

【专利技术属性】
技术研发人员:刘思灿柯昂李光辉汪世溶何际平黄强奚鹏程
申请(专利权)人:北京理工大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1