The invention discloses a 16-position error modulation method for a two-axis rotating inertial navigation system. Its steps are: determining the carrier coordinate system, determining the rotating axis, determining the rotating coordinate system, defining the constant errors of gyroscopes and accelerometers, calibration coefficient errors and installation errors, determining the rotating angular velocity, the number of stopping positions, rotating angular velocity and sequentially determining the rotation order of 1-16. The rotation axis, rotation direction, rotation angle, stop time, attitude error in a rotation cycle, velocity error in a rotation cycle and longitude and latitude error in a long voyage are determined. The invention realizes that without increasing the cost and complexity of the system, by changing the rotation order of the sixteen positions, the attitude error and the accumulated velocity error of the system in a rotation period are effectively reduced, and the oscillation amplitude of the longitude error and latitude error caused by the system is significantly reduced, thus further improving the navigation accuracy of the two-axis rotating inertial navigation system.
【技术实现步骤摘要】
双轴旋转惯导系统的十六位置误差调制方法本专利技术涉及惯性导航
,具体地指一种基于十六位置旋转的双轴旋转惯导系统误差调制方法。技术背景惯性导航系统(“惯导系统”)基于由三组正交的陀螺仪和加速度计构成的惯性测量单元测量载体的运动信息通过导航计算得到载体的导航参数,是一种重要的自主性、隐蔽性导航手段,广泛应用于航空、航天、航海导航领域。由于系统在导航计算中具有积分环节,惯导系统误差在误差源作用下随时间累积。旋转惯导系统就是通过在系统惯性测量单元上增加旋转机构,驱动该单元绕载体周期性旋转用以调制系统的常值误差源和慢变误差源,从而减小系统误差。目前,根据驱动惯性测量单元旋转的转轴的数量可将旋转惯导系统分为单轴和双轴旋转惯导系统。旋转在调制系统的常值误差和慢变误差的同时,也会与系统的刻度系数误差、安装误差等形成耦合效应,从而影响系统精度。因此,旋转方案是进行旋转惯导系统设计时需要考虑的核心技术之一。不同的旋转方案对误差源的调制效果不同,同时与刻度系数误差、安装误差的耦合效应也不相同,从而对系统精度产生不同的影响。袁保伦(袁保伦.四频激光陀螺旋转式惯导系统研究[D].国防科 ...
【技术保护点】
1.一种双轴旋转惯导系统的十六位置误差调制方法,其特征在于,它包括如下步骤:步骤S11:确定双轴旋转惯导系统的惯性测量单元所处的载体坐标系,根据双轴旋转惯导系统安装在载体上的方向,确定惯性测量单元的质心为坐标原点,在通过载体质心的载体横向剖面内选定指向惯性测量单元的右侧为X轴,指向惯性测量单元的前方为Y轴,指向惯性测量单元的上方为Z轴;步骤S12:选择双轴旋转惯导系统的任意两个旋转轴,作为惯性测量单元的旋转轴;步骤S13:确定旋转惯导系统中惯性测量单元旋转时的旋转坐标系,该坐标系初始时刻与载体坐标系重合,当惯性测量单元绕X轴旋转时,X轴与载体系X轴重合,Y和Z轴绕X轴以旋转 ...
【技术特征摘要】
1.一种双轴旋转惯导系统的十六位置误差调制方法,其特征在于,它包括如下步骤:步骤S11:确定双轴旋转惯导系统的惯性测量单元所处的载体坐标系,根据双轴旋转惯导系统安装在载体上的方向,确定惯性测量单元的质心为坐标原点,在通过载体质心的载体横向剖面内选定指向惯性测量单元的右侧为X轴,指向惯性测量单元的前方为Y轴,指向惯性测量单元的上方为Z轴;步骤S12:选择双轴旋转惯导系统的任意两个旋转轴,作为惯性测量单元的旋转轴;步骤S13:确定旋转惯导系统中惯性测量单元旋转时的旋转坐标系,该坐标系初始时刻与载体坐标系重合,当惯性测量单元绕X轴旋转时,X轴与载体系X轴重合,Y和Z轴绕X轴以旋转角速度转动,当惯性测量单元绕Y轴旋转时,Y轴与载体系Y轴重合,X和Z轴绕Y轴以旋转角速度转动,当惯性测量单元绕Z轴旋转时,Z轴与载体系Z轴重合,X和Y轴绕Z轴以旋转角速度转动;步骤S14:定义惯性测量单元中陀螺仪和加速度计的常值误差、刻度系数误差和安装误差;步骤S21:确定旋转惯导系统中惯性测量单元绕旋转轴旋转的角速度、停止位置数、旋转周期;步骤S22:确定惯性测量单元在第1个旋转秩序下的转动方向、转动角速度、旋转角度和姿态转换矩阵;步骤S23:确定惯性测量单元在第1个旋转秩序结束后在所处停止位置的停止时间和姿态转换矩阵;步骤S24:确定惯性测量单元在第2个旋转秩序下的转动方向、转动角速度、旋转角度和姿态转换矩阵;步骤S25:确定惯性测量单元在第2个旋转秩序结束后在所处停止位置的停止时间和姿态转换矩阵;步骤S26:确定惯性测量单元在第3个旋转秩序下的转动方向、转动角速度、旋转角度和姿态转换矩阵;步骤S27:确定惯性测量单元在第3个旋转秩序结束后在所处停止位置的停止时间和姿态转换矩阵;步骤S28:确定惯性测量单元在第4个旋转秩序下的转动方向、转动角速度、旋转角度和姿态转换矩阵;步骤S29:确定惯性测量单元在第4个旋转秩序结束后在所处停止位置的停止时间和姿态转换矩阵;步骤S210:确定惯性测量单元在第5个旋转秩序下的转动方向、转动角速度、旋转角度和姿态转换矩阵;步骤S211:确定惯性测量单元在第5个旋转秩序结束后在所处停止位置的停止时间和姿态转换矩阵;步骤S212:确定惯性测量单元在第6个旋转秩序下的转动方向、转动角速度、旋转角度和姿态转换矩阵;步骤S213:确定惯性测量单元在第6个旋转秩序结束后在所处停止位置的停止时间和姿态转换矩阵;步骤S214:确定惯性测量单元在第7个旋转秩序下的转动方向、转动角速度、旋转角度和姿态转换矩阵;步骤S215:确定惯性测量单元在第7个旋转秩序结束后在所处停止位置的停止时间和姿态转换矩阵;步骤S216:确定惯性测量单元在第8个旋转秩序下的转动方向、转动角速度、旋转角度和姿态转换矩阵;步骤S217:确定惯性测量单元在第8个旋转秩序结束后在所处停止位置的停止时间和姿态转换矩阵;步骤S218:确定惯性测量单元在第9个旋转秩序下的转动方向、转动角速度、旋转角度和姿态转换矩阵;步骤S219:确定惯性测量单元在第9个旋转秩序结束后在所处停止位置的停止时间和姿态转换矩阵;步骤S220:确定惯性测量单元在第10个旋转秩序下的转动方向、转动角速度、旋转角度和姿态转换矩阵;步骤S221:确定惯性测量单元在第10个旋转秩序结束后在所处停止位置的停止时间和姿态转换矩阵;步骤S222:确定惯性测量单元在第11个旋转秩序下的转动方向、转动角速度、旋转角度和姿态转换矩阵;步骤S223:确定惯性测量单元在第11个旋转秩序结束后在所处停止位置的停止时间和姿态转换矩阵;步骤S224:确定惯性测量单元在第12个旋转秩序下的转动方向、转动角速度、旋转角度和姿态转换矩阵;步骤S225:确定惯性测量单元在第12个旋转秩序结束后在所处停止位置的停止时间和姿态转换矩阵;步骤S226:确定惯性测量单元在第13个旋转秩序下的转动方向、转动角速度、旋转角度和姿态转换矩阵;步骤S227:确定惯性测量单元在第13个旋转秩序结束后在所处停止位置的停止时间和姿态转换矩阵;步骤S228:确定惯性测量单元在第14个旋转秩序下的转动方向、转动角速度、旋转角度和姿态转换矩阵;步骤S229:确定惯性测量单元在第14个旋转秩序结束后在所处停止位置的停止时间和姿态转换矩阵;步骤S230:确定惯性测量单元在第15个旋转秩序下的转动方向、转动角速度、旋转角度和姿态转换矩阵;步骤S231:确定惯性测量单元在第15个旋转秩序结束后在所处停止位置的停止时间和姿态转换矩阵;步骤S232:确定惯性测量单元在第16个旋转秩序下的转动方...
【专利技术属性】
技术研发人员:查峰,傅军,常路宾,何泓洋,覃方军,李京书,
申请(专利权)人:中国人民解放军海军工程大学,
类型:发明
国别省市:湖北,42
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。