一种含测量噪声的无人船位置与速度估计结构及设计方法技术

技术编号:20543206 阅读:84 留言:0更新日期:2019-03-09 16:16
本发明专利技术公开了一种无人船位置和速度状态信息估计结构及设计方法,所述结构包括加速度计单元、陀螺仪单元、磁力计单元、全球定位系统信号采集单元、坐标系转换单元、状态重组单元、比较单元、惯性导航系统数据解算单元和非线性观测器导航滤波算法单元。本发明专利技术利用带有测量噪声的无人船位置和速度信息,通过基于非线性观测器的方法进行多传感器信息融合处理,估计出实际的无人船位置和速度信息,既使得所设计的非线性观测器收敛特性更加明确,又方便了参数的调节过程,降低了计算量。本发明专利技术考虑了传感器的测量噪声问题,可从带有测量噪声的状态信息中获得实际位置和速度信息,并形成更连续和稳定的导航数据,也使航向角度的估计更加精确。

A Structure and Design Method of Position and Velocity Estimation for Unmanned Vehicle with Measurement Noise

The present invention discloses a structure and design method of position and velocity state information estimation for unmanned ship. The structure includes accelerometer unit, gyroscope unit, magnetometer unit, global positioning system signal acquisition unit, coordinate system conversion unit, state reorganization unit, comparison unit, inertial navigation system data solution unit and navigation filtering algorithm unit of non-linear observer. The method utilizes the position and velocity information of unmanned ship with measurement noise and uses the method of multi-sensor information fusion based on the non-linear observer to estimate the actual position and velocity information of unmanned ship, which not only makes the convergence characteristics of the designed non-linear observer clearer, but also facilitates the adjustment process of parameters and reduces the calculation amount. The method considers the measurement noise of the sensor, obtains the actual position and velocity information from the state information with measurement noise, forms more continuous and stable navigation data, and makes the estimation of heading angle more accurate.

【技术实现步骤摘要】
一种含测量噪声的无人船位置与速度估计结构及设计方法
本专利技术涉及一种含测量噪声的水面无人船位置与速度估计方法,尤其涉及一种针对欠驱动无人船的非线性观测器估计无人船位置和速度状态信息的设计方法,属于水面无人船多传感器信息融合

技术介绍
水面无人船是无人海洋航行器的一种,具有体积小、成本低、灵活性强和隐蔽性高等优点,可搭载先进的导航控制系统、可靠通信系统、高精度传感器系统和武器系统等不同功能模块,完成海洋开发和海洋运输等任务,在军事和民用领域得到了广泛研究和应用。在无人船的研究内容方面,无人船结构研究、无人船导航制导研究和无人船控制系统研究是主要的三大方向,并得到了较为普遍的关注和研究。无人船导航制导研究主要目的是通过导航系统得到无人船实时的位置和速度状态信息、用于无人船控制算法以及编队算法的研究,无人船位置和速度状态信息估计不仅是无人船导航制导研究的重要内容,而且是实现无人船其它各项功能的关键。海上作业,海洋学研究任务和海上运输都需要获得准确的船舶运动数据来保证其安全和业务开展。通过无人船导航系统得到船舶的位置和速度实时状态信息对于无人船的应用显得尤为重要。因此,根据无人船导航系统设计一种无人船位置和速度实时状态信息估计方法是十分有必要的。在无人船位置和速度状态信息估计的方法中,国内外已经取得一些研究结果,从结构和设计方面,现有的技术存在以下不足:第一,现有无人船位置和速度估计方法大多是通过卡尔曼滤波器设计,存在计算量大、调参困难和非线性系统收敛性质不明确等缺点;第二,现有其它很多方法都是将卡尔曼滤波器和智能控制算法相结合,具有在普通单片机不易实现的缺点。随着对水面无人船运动控制和智能水平的要求越来越高,在现实应用中迫切的需要一种能够精确估计无人船位置和速度状态信息的估计方法。
技术实现思路
为解决现有技术存在的不足,本专利技术要提出一种含测量噪声的无人船位置与速度估计结构及设计方法,能够利用带测量噪声的无人船传感器信息,包括地球坐标系下的位置坐标和艏摇角、船体坐标系下的纵荡速度和加速度信息,通过非线性观测器估计方法进行数据融合得到无人船的实时位置和速度状态信息。为了实现上述目的,本专利技术的技术方案如下:一种无人船位置和速度状态信息估计结构,包括加速度计单元、陀螺仪单元、磁力计单元、全球定位系统信号采集单元、坐标系转换单元、状态重组单元、比较单元、惯性导航系统数据解算单元和非线性观测器导航滤波算法单元,所述的加速度计单元测量无人船的三轴加速度信息;所述的陀螺仪单元测量无人船的加速度信息;所述的磁力计单元测量无人船的磁场信息;所述的加速度计单元、陀螺仪单元和磁力计单元的输出端均与惯性导航系统数据解算单元的输入端相连;所述的惯性导航系统数据解算单元的输出端与非线性观测器导航滤波算法单元的输入端相连;所述的全球定位系统信号采集单元测量无人船的位置和速度信息;全球定位系统信号采集单元的位置信息输出端与坐标系转换单元的输入端相连;所述的坐标系转换单元的输出端与状态重组单元的输入端相连;全球定位系统信号采集单元的速度信息输出端直接与状态重组单元的输入端相连;惯性导航系统数据解算单元的输出端还与状态重组单元的输入端相连;所述的状态重组单元的输出端与比较单元的输入端相连;所述的非线性观测器导航滤波算法单元接收惯性导航系统数据解算单元和比较单元的无人船的位置、速度、加速度和航向信息,并将输出的无人船位置和速度信息的估计值作为比较单元的输入;所述的比较单元输出的位置误差和速度误差输出端均与非线性观测器导航滤波算法单元的输入端相连;非线性观测器导航滤波算法单元的输出端最终输出无人船位置和速度信息的估计值;所述的加速度计单元、陀螺仪单元、磁力计单元和全球定位系统信号采集单元组成微机械惯性传感器模块。一种含测量噪声的无人船位置与速度估计结构的设计方法,所述的无人船的运动数学模型基于地球坐标系和载体坐标系建立。描述无人船位置、速度和姿态的运动学方程表示为:其中,pn=[N,E,D]T∈R3分别为无人船在北、东、地方向的位置信息;νb=[u,v,w]T∈R3分别为无人船纵荡速度、横荡速度和升沉速度信息;ab=[ax,ay,az]T∈R3分别为无人船在载体坐标系三个方向的加速度信息;ωb=[p,q,r]T∈R3分别为无人船在纵荡速度、横荡速度和升沉速度方向的角速度信息;R为无人船地球坐标系和载体坐标系之间的旋转矩阵。对于任意的三维向量x=[x1,x2,x3]T,运算S(x)定义一个斜对称矩阵,如下式所示:所述的方法包括以下步骤:A、微机械惯性传感器模块的设计与配置微机械惯性传感器模块的设计与配置是无人船状态信息的最根本来源。微机械惯性传感器模块包括全球定位系统信号采集单元、加速度计单元、陀螺仪单元和磁力计单元四个部分,分别测量得到无人船在地球坐标系下的原始经度信息、纬度信息、前向速度信息、三轴加速度信息、三轴角速度信息和三轴磁场信息。配置如下所示:在地球坐标系下,从全球定位系统测量的带有测量噪声的位置信息Pδ表示为:Pδ=[xδ,yδ]T;式中,xδ代表经度信息,yδ代表纬度信息;在无人船载体坐标系下,从全球定位系统测量的带有测量噪声的部分速度信息Vδ表示为:Vδ=uδ;式中,uδ代表前向速度信息:在无人船载体坐标系三个方向下,从加速度计测量的带有测量噪声的加速度信息表示为:式中,axδ代表载体坐标系下北方向的加速度信息,ayδ代表载体坐标系下东方向的加速度信息,azδ代表载体坐标系下地方向的加速度信息;在无人船载体坐标系下,从陀螺仪测量的带有测量噪声的角速度信息表示为:式中,p代表载体坐标系下北方向的加速度信息,q代表载体坐标系下东方向的加速度信息,r代表载体坐标系下地方向的加速度信息:;在无人船载体坐标系下,从磁力计测量的带有测量噪声的磁场信息表示为:式中,代表载体坐标系下北方向的加速度信息,代表载体坐标系下东方向的加速度信息,代表载体坐标系下地方向的加速度信息;B、状态重组单元的设计状态重组单元是将经过转换的微机械惯性传感器模块的信息作为状态变量,在考虑所设计无人船航行环境以及航行速度的属性条件下,将无人船的状态信息进行组合,表示无人船的姿态信息。状态重组单元的输入分为三个部分:第一部分是全球定位系统信号采集单元输出的位置信息经过坐标系转换得到的地球坐标系下的北东地位置信息;第二部分是全球定位系统信号采集单元直接输出的载体坐标系下的无人船的速度信息;最后一部分是加速度计单元、陀螺仪单元和磁力计单元组成的微机械惯性传感器模块输出的原始信息经过数据解算后得到的航向和角速度信息。其中,前两部分都是通过全球定位系统信号采集单元得到的原始信息,通过对全球定位系统接收到的位置信息进行解析,提取有效数据存入无人船导航系统的缓冲区。所述的全球定位系统通过NMEA-0183协议输出包含位置信息的不同格式帧,通过接收最小数据量的格式帧获取全球定位系统信息,信息格式如下所示:$GPRMC,time,status,Lat,N,Lon,E,spd,cog,date,mv,mvE,mode,sum(3)其中,Lat代表纬度信息、N代表北纬、Lon代表经度信息、E代表东经、spd代表速度信息。第一部分是无人船全球定位系统信号采集单元输出的地球坐标本文档来自技高网
...

【技术保护点】
1.一种无人船位置和速度状态信息估计结构,其特征在于:包括加速度计单元、陀螺仪单元、磁力计单元、全球定位系统信号采集单元、坐标系转换单元、状态重组单元、比较单元、惯性导航系统数据解算单元和非线性观测器导航滤波算法单元,所述的加速度计单元测量无人船的三轴加速度信息;所述的陀螺仪单元测量无人船的加速度信息;所述的磁力计单元测量无人船的磁场信息;所述的加速度计单元、陀螺仪单元和磁力计单元的输出端均与惯性导航系统数据解算单元的输入端相连;所述的惯性导航系统数据解算单元的输出端与非线性观测器导航滤波算法单元的输入端相连;所述的全球定位系统信号采集单元测量无人船的位置和速度信息;全球定位系统信号采集单元的位置信息输出端与坐标系转换单元的输入端相连;所述的坐标系转换单元的输出端与状态重组单元的输入端相连;全球定位系统信号采集单元的速度信息输出端直接与状态重组单元的输入端相连;惯性导航系统数据解算单元的输出端还与状态重组单元的输入端相连;所述的状态重组单元的输出端与比较单元的输入端相连;所述的非线性观测器导航滤波算法单元接收惯性导航系统数据解算单元和比较单元的无人船的位置、速度、加速度和航向信息,并将输出的无人船位置和速度信息的估计值作为比较单元的输入;所述的比较单元输出的位置误差和速度误差输出端均与非线性观测器导航滤波算法单元的输入端相连;非线性观测器导航滤波算法单元的输出端最终输出无人船位置和速度信息的估计值;所述的加速度计单元、陀螺仪单元、磁力计单元和全球定位系统信号采集单元组成微机械惯性传感器模块。...

【技术特征摘要】
1.一种无人船位置和速度状态信息估计结构,其特征在于:包括加速度计单元、陀螺仪单元、磁力计单元、全球定位系统信号采集单元、坐标系转换单元、状态重组单元、比较单元、惯性导航系统数据解算单元和非线性观测器导航滤波算法单元,所述的加速度计单元测量无人船的三轴加速度信息;所述的陀螺仪单元测量无人船的加速度信息;所述的磁力计单元测量无人船的磁场信息;所述的加速度计单元、陀螺仪单元和磁力计单元的输出端均与惯性导航系统数据解算单元的输入端相连;所述的惯性导航系统数据解算单元的输出端与非线性观测器导航滤波算法单元的输入端相连;所述的全球定位系统信号采集单元测量无人船的位置和速度信息;全球定位系统信号采集单元的位置信息输出端与坐标系转换单元的输入端相连;所述的坐标系转换单元的输出端与状态重组单元的输入端相连;全球定位系统信号采集单元的速度信息输出端直接与状态重组单元的输入端相连;惯性导航系统数据解算单元的输出端还与状态重组单元的输入端相连;所述的状态重组单元的输出端与比较单元的输入端相连;所述的非线性观测器导航滤波算法单元接收惯性导航系统数据解算单元和比较单元的无人船的位置、速度、加速度和航向信息,并将输出的无人船位置和速度信息的估计值作为比较单元的输入;所述的比较单元输出的位置误差和速度误差输出端均与非线性观测器导航滤波算法单元的输入端相连;非线性观测器导航滤波算法单元的输出端最终输出无人船位置和速度信息的估计值;所述的加速度计单元、陀螺仪单元、磁力计单元和全球定位系统信号采集单元组成微机械惯性传感器模块。2.一种含测量噪声的无人船位置与速度估计结构的设计方法,其特征在于:所述的无人船的运动数学模型基于地球坐标系和载体坐标系建立;描述无人船位置、速度和姿态的运动学方程表示为:其中,pn=[N,E,D]T∈R3分别为无人船在北、东、地方向的位置信息;νb=[u,v,w]T∈R3分别为无人船纵荡速度、横荡速度和升沉速度信息;ab=[ax,ay,az]T∈R3分别为无人船在载体坐标系三个方向的加速度信息;ωb=[p,q,r]T∈R3分别为无人船在纵荡速度、横荡速度和升沉速度方向的角速度信息;R为无人船地球坐标系和载体坐标系之间的旋转矩阵;对于任意的三维向量x=[x1,x2,x3]T,运算S(x)定义一个斜对称矩阵,如下式所示:所述的方法包括以下步骤:A、微机械惯性传感器模块的设计与配置微机械惯性传感器模块的设计与配置是无人船状态信息的最根本来源;微机械惯性传感器模块包括全球定位系统信号采集单元、加速度计单元、陀螺仪单元和磁力计单元四个部分,分别测量得到无人船在地球坐标系下的原始经度信息、纬度信息、前向速度信息、三轴加速度信息、三轴角速度信息和三轴磁场信息;配置如下所示:在地球坐标系下,从全球定位系统测量的带有测量噪声的位置信息Pδ表示为:Pδ=[xδ,yδ]T;式中,xδ代表经度信息,yδ代表纬度信息;在无人船载体坐标系下,从全球定位系统测量的带有测量噪声的部分速度信息Vδ表示为:Vδ=uδ;式中,uδ代表前向速度信息:在无人船载体坐标系三个方向下,从加速度计测量的带有测量噪声的加速度信息表示为:式中,axδ代表载体坐标系下北方向的加速度信息,ayδ代表载体坐标系下东方向的加速度信息,azδ代表载体坐标系下地方向的加速度信息;在无人船载体坐标系下,从陀螺仪测量的带有测量噪声的角速度信息表示为:式中,p代表载体坐标系下北方向的加速度信息,q代表载体坐标系下东方向的加速度信息,r代表载体坐标系下地方向的加速度信息:;在无人船载体坐标系下,从磁力计测量的带有测量噪声的磁场信息表示为:式中,代表载体坐标系下北方向的加速度信息,代表载体坐标系下东方向的加速度信息,代表载体坐标系下地方向的加速度信息;B、状态重组单元的设计状态重组单元是将经过转换的微机械惯性传感...

【专利技术属性】
技术研发人员:彭周华张斌王丹李铁山刘陆古楠任帅
申请(专利权)人:大连海事大学
类型:发明
国别省市:辽宁,21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1